Hive-SQL语法大全

Hive SQL 语法大全

基于语法描述说明

CREATE DATABASE [IF NOT EXISTS] db_name [LOCATION] 'path';
SELECT expr, ... FROM tbl ORDER BY col_name [ASC | DESC]
(A | B | C)

如上语法,在语法描述中出现:

  • [],表示可选,如上[LOCATION] 表示可写、可不写

  • |,表示或,如上ASC | DESC,表示二选一

  • …,表示序列,即未完结,如上SELECT expr, ... 表示在SELECT后可以跟多个expr(查询表达式),以逗号隔开

  • (),表示必填,如上(A | B | C)表示此处必填,填入内容在A、B、C中三选一

数据库操作

创建数据库

CREATE DATABASE [IF NOT EXISTS] db_name [LOCATION 'path'] [COMMENT database_comment];
  • IF NOT EXISTS,如存在同名数据库不执行任何操作,否则执行创建数据库操作

  • [LOCATION],自定义数据库存储位置,如不填写,默认数据库在HDFS的路径为:/user/hive/warehouse

  • [COMMENT database_comment],可选,数据库注释

删除数据库

DROP DATABASE [IF EXISTS] db_name [CASCADE];
  • [IF EXISTS],可选,如果存在此数据库执行删除,不存在不执行任何操作
  • [CASCADE],可选,级联删除,即数据库内存在表,使用CASCADE可以强制删除数据库

数据库修改LOCATION

ALTER DATABASE database_name SET LOCATION hdfs_path;

不会在HDFS对数据库所在目录进行改名,只是修改location后,新创建的表在新的路径,旧的不变

选择数据库

USE db_name;
  • 选择数据库后,后续SQL操作基于当前选择的库执行
  • 如不使用use,默认在default库执行

若想切换回使用default库

USE DEFAULT;

查询当前USE的数据库

SELECT current_database();

表操作

数据类型

分类类型描述字面量示例
原始类型BOOLEANtrue/falseTRUE
TINYINT1字节的有符号整数 -128~1271Y
SMALLINT2个字节的有符号整数,-32768~327671S
INT4个字节的带符号整数1
BIGINT8字节带符号整数1L
FLOAT4字节单精度浮点数1.0
DOUBLE8字节双精度浮点数1.0
DEICIMAL任意精度的带符号小数1.0
STRING字符串,变长“a”,’b’
VARCHAR变长字符串“a”,’b’
CHAR固定长度字符串“a”,’b’
BINARY字节数组
TIMESTAMP时间戳,毫秒值精度122327493795
DATE日期‘2016-03-29’
时间频率间隔
复杂类型ARRAY有序的的同类型的集合array(1,2)
MAPkey-value,key必须为原始类型,value可以任意类型map(‘a’,1,’b’,2)
STRUCT字段集合,类型可以不同struct(‘1’,1,1.0), named_stract(‘col1’,’1’,’col2’,1,’clo3’,1.0)
UNION在有限取值范围内的一个值create_union(1,’a’,63)

基础建表

CREATE [EXTERNAL] TABLE tb_name(col_name col_type [COMMENT col_comment], ......)[COMMENT tb_comment][PARTITIONED BY(col_name, col_type, ......)][CLUSTERED BY(col_name, col_type, ......) INTO num BUCKETS][ROW FORMAT DELIMITED FIELDS TERMINATED BY ''][LOCATION 'path']
  • [EXTERNAL],外部表,必须搭配

  • [ROW FORMAT DELIMITED FIELDS TERMINATED BY '']指定列分隔符

  • [LOCATION 'path']表数据路径

  • 外部表示意

    CREATE EXTERNAL TABLE test_ext(id int) COMMENT 'external table' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LOCATION 'hdfs://node1:8020/tmp/test_ext';
    

(1)外部表中的表和数据是相互独立的,将表删除(删除元数据),数据还保留在Hive中;将数据删除,表仍然存在。
请添加图片描述

(2) 删除内部表,则元数据和数据都被删除。
请添加图片描述

  • [desc formatted tablename]查看表类型

  • [COMMENT tb_comment]表注释,可选

  • [PARTITIONED BY(col_name, col_type, ......)]基于列分区

    -- 分区表示意
    CREATE TABLE test_ext(id int) COMMENT 'partitioned table' PARTITION BY(year string, month string, day string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
    
  • [CLUSTERED BY(col_name, col_type, ......)]基于列分桶

    CREATE TABLE course (c_id string,c_name string,t_id string) CLUSTERED BY(c_id) INTO 3 BUCKETS ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
    

基于其它表的结构建表

CREATE TABLE tbl_name LIKE other_tbl;

基于查询结果建表

CREATE TABLE tbl_name AS SELECT ...;

删除表

DROP TABLE tbl;

修改表

重命名

ALTER TABLE old RENAME TO new;

修改属性:内部表和外部表的转换

ALTER TABLE tbl SET TBLPROPERTIES(key=value);
-- 常用属性
("EXTERNAL"="TRUE") -- 内外部表,TRUE表示外部表,内转外
('comment' = new_comment) -- 修改表注释
-- 其余属性参见
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-listTableProperties

分区操作

创建分区表

-- 分区表示意
CREATE TABLE test_ext(id int) COMMENT 'partitioned table' PARTITION BY(year string, month string, day string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

添加分区

ALTER TABLE tablename ADD PARTITION (partition_key='partition_value', ......);

修改分区值

ALTER TABLE tablename PARTITION (partition_key='old_partition_value') RENAME TO PARTITION (partition_key='new_partition_value');

注意

只会在元数据中修改,不会同步修改HDFS路径吗,如:

  • 原分区路径为:/user/hive/warehouse/test.db/test_table/month=201910,分区名:month='201910'
  • 将分区名修改为:201911后,分区所在路径不变,依旧是:/user/hive/warehouse/test.db/test_table/month=201910

如果希望修改分区名后,同步修改HDFS的路径,并保证正常可用,需要:

  • 在元数据库中:找到SDS表 -> 找到LOCATION列 -> 找到对应分区的路径记录进行修改
    • 如将记录的:/user/hive/warehouse/test.db/test_table/month=201910 修改为:/user/hive/warehouse/test.db/test_table/month=201911
  • 在HDFS中,同步修改文件夹名
    • 如将文件夹:/user/hive/warehouse/test.db/test_table/month=201910 修改为:/user/hive/warehouse/test.db/test_table/month=201911

删除分区

ALTER TABLE tablename DROP PARTITION (partition_key='partition_value');

删除分区后,只是在元数据中删除,即删除元数据库中:

  • PARTITION
  • SDS

相关记录

分区所在的HDFS文件夹依旧保留

加载数据

LOAD DATA:从本地 or Hdfs

LOAD DATA [LOCAL] INPATH 'path' INTO TABLE tbl PARTITION(partition_key='partition_value');
-- 注意,基于HDFS进行load加载数据,源数据文件会消失
--(本质是被移动到表所在的目录中)

INSERT SELECT:从其他表中加载数据

INSERT (OVERWRITE | INTO) TABLE tbl PARTITION(partition_key='partition_value') SELECT ... FROM ...;

分桶操作

建表

CREATE TABLE course (c_id string,c_name string,t_id string) [PARTITION(partition_key='partition_value')] CLUSTERED BY(c_id) INTO 3 BUCKETS ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
  • CLUSTERED BY(col) 指定分桶列
  • INTO 3 BUCKETS,设定3个桶

分桶表需要开启:

set hive.enforce.bucketing=true;

设置自动匹配桶数量的reduces task数量

数据加载

INSERT (OVERWRITE | INTO) TABLE tbl [PARTITION(partition_key='partition_value')] SELECT ... FROM ... CLUSTER BY(col);

分桶表无法使用LOAD DATA进行数据加载

数据加载

LOAD DATA

将数据文件加载到表

LOAD DATA [LOCAL] INPATH 'path' INTO TABLE tbl [PARTITION(partition_key='partition_value')];	-- 指定分区可选

INSERT SELECT

将其它表数据,加载到目标表

INSERT (OVERWRITE | INTO) TABLE tbl [PARTITION(partition_key='partition_value')] 		-- 指定分区,可选SELECT ... FROM ... [CLUSTER BY(col)];				-- 指定分桶列,可选

数据导出

INSERT OVERWRITE SELECT

INSERT OVERWRITE [LOCAL] DIRECTORY ‘path’ 				-- LOCAL可选,带LOCAL导出Linux本地,不带LOCAL导出到HDFS[ROW FORMAT DELIMITED FIELDS TERMINATED BY '']		-- 可选,自定义列分隔符SELECT ... FROM ...;
-- 将表中的数据导出到其他任意目录,例如linux本地磁盘,例如hdfs,例如mysql等等

bin/hive

  • bin/hive -e 'sql' > export_filesql结果重定向到导出文件中
  • bin/hive -f 'sql_script_file' > export_filesql脚本执行的结果重定向到导出文件中

复杂类型

类型定义示例内含元素类型元素个数取元素可用函数
arrayarray<类型>如定义为array数据为:1,2,3,4,5单值,类型取决于定义动态,不限制array[数字序号] 序号从0开始size统计元素个数 array_contains判断是否包含指定数据
mapmap<key类型, value类型>如定义为:map<string, int>数据为:{’a’: 1, ‘b’: 2, ‘c’: 3}键值对,K-V,K和V类型取决于定义动态,不限制map[key] 取出对应key的valuesize统计元素个数array_contains判断是否包含指定数据 map_keys取出全部key,返回array map_values取出全部values,返回array
structstruct<子列名 类型, 子列名 类型…>如定义为:struct<c1 string, c2 int, c3 date>数据为:’a’, 1, ‘2000-01-01’单值,类型取决于定义固定,取决于定义的子列数量struct.子列名 通过子列名取出子列值暂无

数据查询的课堂SQL记录

基本查询

create database itheima;
use itheima;
CREATE TABLE itheima.orders (orderId bigint COMMENT '订单id',orderNo string COMMENT '订单编号',shopId bigint COMMENT '门店id',userId bigint COMMENT '用户id',orderStatus tinyint COMMENT '订单状态 -3:用户拒收 -2:未付款的订单 -1:用户取消 0:待发货 1:配送中 2:用户确认收货',goodsMoney double COMMENT '商品金额',deliverMoney double COMMENT '运费',totalMoney double COMMENT '订单金额(包括运费)',realTotalMoney double COMMENT '实际订单金额(折扣后金额)',payType tinyint COMMENT '支付方式,0:未知;1:支付宝,2:微信;3、现金;4、其他',isPay tinyint COMMENT '是否支付 0:未支付 1:已支付',userName string COMMENT '收件人姓名',userAddress string COMMENT '收件人地址',userPhone string COMMENT '收件人电话',createTime timestamp COMMENT '下单时间',payTime timestamp COMMENT '支付时间',totalPayFee int COMMENT '总支付金额'
) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';load data local inpath '/home/hadoop/itheima_orders.txt' into table itheima.orders;CREATE TABLE itheima.users (userId int,loginName string,loginSecret int,loginPwd string,userSex tinyint,userName string,trueName string,brithday date,userPhoto string,userQQ string,userPhone string,userScore int,userTotalScore int,userFrom tinyint,userMoney double,lockMoney double,createTime timestamp,payPwd string,rechargeMoney double
) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';load data local inpath '/home/hadoop/itheima_users.txt' into table itheima.users;-- 查询全表数据
SELECT * FROM itheima.orders;-- 查询单列信息
SELECT orderid, userid, totalmoney FROM itheima.orders o ;-- 查询表有多少条数据
SELECT COUNT(*) FROM itheima.orders;-- 过滤广东省的订单
SELECT * FROM itheima.orders WHERE useraddress LIKE '%广东%';-- 找出广东省单笔营业额最大的订单
SELECT * FROM itheima.orders WHERE useraddress LIKE '%广东%'
ORDER BY totalmoney DESC LIMIT 1;-- 统计未支付、已支付各自的人数
SELECT ispay, COUNT(*) FROM itheima.orders o GROUP BY ispay ;-- 在已付款的订单中,统计每个用户最高的一笔消费金额
SELECT userid, MAX(totalmoney) FROM itheima.orders WHERE ispay = 1 GROUP BY userid;
-- 统计每个用户的平均订单消费额
SELECT userid, AVG(totalmoney) FROM itheima.orders GROUP BY userid;
-- 统计每个用户的平均订单消费额,并过滤大于10000的数据
SELECT userid, AVG(totalmoney) AS avg_money FROM itheima.orders GROUP BY userid HAVING avg_money > 10000;-- 订单表和用户表JOIN 找出用户username
SELECT o.orderid, o.userid, u.username FROM itheima.orders o JOIN itheima.users u ON o.userid = u.userid;
SELECT o.orderid, o.userid, u.username FROM itheima.orders o LEFT JOIN itheima.users u ON o.userid = u.userid;

RLIKE

image-20230224234706719

image-20230224234719463

image-20230224234733895

-- 查找广东省数据
SELECT * FROM itheima.orders WHERE useraddress RLIKE '.*广东.*';
-- 查找用户地址是:xx省 xx市 xx区
SELECT * FROM itheima.orders WHERE useraddress RLIKE '..省 ..市 ..区';
-- 查找用户姓为:张、王、邓
SELECT * FROM itheima.orders WHERE username RLIKE '[张王邓]\\S+';
-- 查找手机号符合:188****0*** 规则
SELECT * FROM itheima.orders WHERE userphone RLIKE '188\\S{4}0[0-9]{3}';

UNION联合

CREATE TABLE itheima.course(
c_id string, 
c_name string, 
t_id string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';LOAD DATA LOCAL INPATH '/home/hadoop/course.txt' INTO TABLE itheima.course;
-- 基础UNION
SELECT * FROM itheima.course WHERE t_id = '周杰轮'UNION
SELECT * FROM itheima.course WHERE t_id = '王力鸿';
-- 去重演示
SELECT * FROM itheima.courseUNION
SELECT * FROM itheima.course;
-- 不去重
SELECT * FROM itheima.courseUNION ALL
SELECT * FROM itheima.course;
-- UNION写在FROM中 UNION写在子查询中
SELECT t_id, COUNT(*) FROM 
(SELECT * FROM itheima.course WHERE t_id = '周杰轮'UNION ALLSELECT * FROM itheima.course WHERE t_id = '王力鸿' 
) AS u GROUP BY t_id;-- 用于INSERT SELECT
INSERT OVERWRITE TABLE itheima.course2
SELECT * FROM itheima.course UNION
SELECT * FROM itheima.course;

Sampling采样

# 随机桶抽取, 分配桶是有规则的
# 可以按照列的hash取模分桶
# 按照完全随机分桶
-- 其它条件不变的话,每一次运行结果一致
select username, orderId, totalmoney FROM itheima.orders tablesample(bucket 3 out of 10 on username);-- 完全随机,每一次运行结果不同
select * from itheima.orders tablesample(bucket 3 out of 10 on rand());# 数据块抽取,按顺序抽取,每次条件不变,抽取结果不变
-- 抽取100条
select * from itheima.orderstablesample(100 rows);-- 取1%数据
select * from itheima.orderstablesample(1 percent);-- 取 1KB数据
select * from itheima.orderstablesample(1K);

虚拟列

虚拟列是Hive内置的可以在查询语句中使用的特殊标记,可以查询数据本身的详细参数。

Hive目前可用3个虚拟列:

- INPUT__FILE__NAME,显示数据行所在的具体文件
- BLOCK__OFFSET__INSIDE__FILE,显示数据行所在文件的偏移量
- ROW__OFFSET__INSIDE__BLOCK,显示数据所在HDFS块的偏移量此虚拟列需要设置:SET hive.exec.rowoffset=true 才可使用
SET hive.exec.rowoffset=true;SELECT orderid, username, INPUT__FILE__NAME, BLOCK__OFFSET__INSIDE__FILE, ROW__OFFSET__INSIDE__BLOCK FROM itheima.orders;SELECT *, BLOCK__OFFSET__INSIDE__FILE FROM itheima.orders WHERE BLOCK__OFFSET__INSIDE__FILE < 1000;SELECT orderid, username, INPUT__FILE__NAME, BLOCK__OFFSET__INSIDE__FILE, ROW__OFFSET__INSIDE__BLOCK FROM itheima.orders_bucket;SELECT INPUT__FILE__NAME, COUNT(*) FROM itheima.orders_bucket GROUP BY INPUT__FILE__NAME;

函数

数值、集合、转换、日期函数

-- 查看所有可用函数
show functions;
-- 查看函数使用方式
describe function extended count;
-- 数值函数
-- round 取整,设置小数精度
select round(3.1415926);		-- 取整(四舍五入)
select round(3.1415926, 4);		-- 设置小数精度4位(四舍五入)
-- 随机数
select rand();					-- 完全随机
select rand(3);					-- 设置随机数种子,设置种子后每次运行结果一致的
-- 绝对值
select abs(-3);
-- 求PI
select pi();-- 集合函数
-- 求元素个数
select size(work_locations) from test_array;
select size(members) from test_map;
-- 取出map的全部key
select map_keys(members) from test_map;
-- 取出map的全部value
select map_values(members) from test_map;
-- 查询array内是否包含指定元素,是就返回True
select * from test_array where ARRAY_CONTAINS(work_locations, 'tianjin');
-- 排序
select *, sort_array(work_locations) from test_array;-- 类型转换函数
-- 转二进制
select binary('hadoop');
-- 自由转换,类型转换失败报错或返回NULL
select cast('1' as bigint);-- 日期函数
-- 当前时间戳
select current_timestamp();
-- 当前日期
select current_date();
-- 时间戳转日期
select to_date(current_timestamp());
-- 年月日季度等
select year('2020-01-11');
select month('2020-01-11');
select day('2020-01-11');
select quarter('2020-05-11');
select dayofmonth('2020-05-11');
select hour('2020-05-11 10:36:59');
select minute('2020-05-11 10:36:59');
select second('2020-05-11 10:36:59');
select weekofyear('2020-05-11 10:36:59');
-- 日期之间的天数
select datediff('2022-12-31', '2019-12-31');
-- 日期相加、相减
select date_add('2022-12-31', 5);
select date_sub('2022-12-31', 5);

社交案例操作SQL

准备数据

-- 创建数据库
create database db_msg;
-- 选择数据库
use db_msg;-- 如果表已存在就删除
drop table if exists db_msg.tb_msg_source ;
-- 建表
create table db_msg.tb_msg_source(msg_time string comment "消息发送时间",sender_name string comment "发送人昵称",sender_account string comment "发送人账号",sender_sex string comment "发送人性别",sender_ip string comment "发送人ip地址",sender_os string comment "发送人操作系统",sender_phonetype string comment "发送人手机型号",sender_network string comment "发送人网络类型",sender_gps string comment "发送人的GPS定位",receiver_name string comment "接收人昵称",receiver_ip string comment "接收人IP",receiver_account string comment "接收人账号",receiver_os string comment "接收人操作系统",receiver_phonetype string comment "接收人手机型号",receiver_network string comment "接收人网络类型",receiver_gps string comment "接收人的GPS定位",receiver_sex string comment "接收人性别",msg_type string comment "消息类型",distance string comment "双方距离",message string comment "消息内容"
);-- 上传数据到HDFS(Linux命令)
hadoop fs -mkdir -p /chatdemo/data
hadoop fs -put chat_data-30W.csv /chatdemo/data/-- 加载数据到表中,基于HDFS加载
load data inpath '/chatdemo/data/chat_data-30W.csv' into table tb_msg_source;-- 验证数据加载
select * from tb_msg_source tablesample(100 rows);
-- 验证一下表的数量
select count(*) from tb_msg_source;

ETL清洗转换

create table db_msg.tb_msg_etl(msg_time string comment "消息发送时间",sender_name string comment "发送人昵称",sender_account string comment "发送人账号",sender_sex string comment "发送人性别",sender_ip string comment "发送人ip地址",sender_os string comment "发送人操作系统",sender_phonetype string comment "发送人手机型号",sender_network string comment "发送人网络类型",sender_gps string comment "发送人的GPS定位",receiver_name string comment "接收人昵称",receiver_ip string comment "接收人IP",receiver_account string comment "接收人账号",receiver_os string comment "接收人操作系统",receiver_phonetype string comment "接收人手机型号",receiver_network string comment "接收人网络类型",receiver_gps string comment "接收人的GPS定位",receiver_sex string comment "接收人性别",msg_type string comment "消息类型",distance string comment "双方距离",message string comment "消息内容",msg_day string comment "消息日",msg_hour string comment "消息小时",sender_lng double comment "经度",sender_lat double comment "纬度"
);INSERT OVERWRITE TABLE db_msg.tb_msg_etl
SELECT *, DATE(msg_time) AS msg_day, HOUR(msg_time) AS msg_hour, SPLIT(sender_gps, ',')[0] AS sender_lng, SPLIT(sender_gps, ',')[1] AS sender_lat
FROM db_msg.tb_msg_source
WHERE LENGTH(sender_gps) > 0;

指标计算

需求1

--保存结果表
CREATE TABLE IF NOT EXISTS tb_rs_total_msg_cnt 
COMMENT "每日消息总量" AS 
SELECT msg_day, COUNT(*) AS total_msg_cnt 
FROM db_msg.tb_msg_etl 
GROUP BY msg_day;

需求2

--保存结果表
CREATE TABLE IF NOT EXISTS tb_rs_hour_msg_cnt 
COMMENT "每小时消息量趋势" AS  
SELECT  msg_hour, COUNT(*) AS total_msg_cnt, COUNT(DISTINCT sender_account) AS sender_user_cnt, COUNT(DISTINCT receiver_account) AS receiver_user_cnt
FROM db_msg.tb_msg_etl GROUP BY msg_hour;

需求3

CREATE TABLE IF NOT EXISTS tb_rs_loc_cnt
COMMENT '今日各地区发送消息总量' AS 
SELECT msg_day,  sender_lng, sender_lat, COUNT(*) AS total_msg_cnt 
FROM db_msg.tb_msg_etl
GROUP BY msg_day, sender_lng, sender_lat;

需求4

--保存结果表
CREATE TABLE IF NOT EXISTS tb_rs_user_cnt
COMMENT "今日发送消息人数、接受消息人数" AS
SELECT 
msg_day, 
COUNT(DISTINCT sender_account) AS sender_user_cnt, 
COUNT(DISTINCT receiver_account) AS receiver_user_cnt
FROM db_msg.tb_msg_etl
GROUP BY msg_day;

需求5

--保存结果表
CREATE TABLE IF NOT EXISTS db_msg.tb_rs_s_user_top10
COMMENT "发送消息条数最多的Top10用户" AS
SELECT sender_name AS username, COUNT(*) AS sender_msg_cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_name 
ORDER BY sender_msg_cnt DESC 
LIMIT 10;

需求6

CREATE TABLE IF NOT EXISTS db_msg.tb_rs_r_user_top10
COMMENT "接收消息条数最多的Top10用户" AS
SELECT 
receiver_name AS username, 
COUNT(*) AS receiver_msg_cnt 
FROM db_msg.tb_msg_etl 
GROUP BY receiver_name 
ORDER BY receiver_msg_cnt DESC 
LIMIT 10;

需求7

CREATE TABLE IF NOT EXISTS db_msg.tb_rs_sender_phone
COMMENT "发送人的手机型号分布" AS
SELECT sender_phonetype, COUNT(sender_account) AS cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_phonetype;

需求8

--保存结果表
CREATE TABLE IF NOT EXISTS db_msg.tb_rs_sender_os
COMMENT "发送人的OS分布" AS
SELECTsender_os, COUNT(sender_account) AS cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_os

Hive列注释、表注释等乱码解决方案

-- 在Hive的MySQL元数据库中执行
use hive;1).修改字段注释字符集alter table COLUMNS_V2 modify column COMMENT varchar(256) character set utf8;
2).修改表注释字符集alter table TABLE_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
3).修改分区表参数,以支持分区键能够用中文表示alter table PARTITION_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
alter table PARTITION_KEYS modify column PKEY_COMMENT varchar(4000) character set utf8;
4).修改索引注解mysql>alter table INDEX_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;

COUNT(sender_account) AS cnt
FROM db_msg.tb_msg_etl
GROUP BY sender_phonetype;

需求8```sql
--保存结果表
CREATE TABLE IF NOT EXISTS db_msg.tb_rs_sender_os
COMMENT "发送人的OS分布" AS
SELECTsender_os, COUNT(sender_account) AS cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_os

Hive列注释、表注释等乱码解决方案

-- 在Hive的MySQL元数据库中执行
use hive;1).修改字段注释字符集alter table COLUMNS_V2 modify column COMMENT varchar(256) character set utf8;
2).修改表注释字符集alter table TABLE_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
3).修改分区表参数,以支持分区键能够用中文表示alter table PARTITION_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
alter table PARTITION_KEYS modify column PKEY_COMMENT varchar(4000) character set utf8;
4).修改索引注解mysql>alter table INDEX_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/637815.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【操作系统和计网从入门到深入】(五)软硬链接和动静态库

前言 这个专栏其实是博主在复习操作系统和计算机网络时候的笔记&#xff0c;所以如果是博主比较熟悉的知识点&#xff0c;博主可能就直接跳过了&#xff0c;但是所有重要的知识点&#xff0c;在这个专栏里面都会提到&#xff01;而且我也一定会保证这个专栏知识点的完整性&…

通信入门系列——连续卷积定理、循环卷积、离散卷积定理

本节目录 一、连续卷积定理 1、时域卷积定理 2、频域卷积定理 二、循环卷积 三、离散卷积定理本节内容 一、连续卷积定理 卷积定理在信号分析中占有重要的地位&#xff0c;包括时域卷积定理和频域卷积定理。在信号分析领域&#xff0c;通常采用基于卷积定理的时频域分析&#…

Zuul1.x 高并发下阻塞分析以及解决方案

背景 由于最近博主在压测接口的时候发现我接口出现卡死状态&#xff0c;最开始以为是我自己接口出现问题&#xff0c;单独压测我自己的服务&#xff08;不经过网关&#xff09;200/qps/10 次循环 是没问题&#xff0c;但是加上网关&#xff08;zuul 1.x&#xff09; 去发现 经…

编曲学习:Cubase12导入Cubasis工程的方法!

Steinberg 发布 Cubasis 3 项目导入器&#xff0c;可将 Cubasis 的项目导入到 Cubase 使用https://m.midifan.com/news_body.php?id35635 我偶然看到这个文章&#xff0c;不过发现Cubase12默认好像没有这个选项&#xff0c;心想着要是移动端能和PC端同步&#xff0c;感觉会挺…

【网站项目】基于jsp的199旅游景点管理系统

&#x1f64a;作者简介&#xff1a;多年一线开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

快速下载百度网盘的文件——使用motrix

问题描述 下载速度慢 上传速度快 解决方案&#xff1a; Motrix 在该开源程序里面 选windows选择zip 启动之后 &#xff0c;把百度网盘的链接转化成磁力链接。然后输入转化后的连接。转换的网页 每次设置下载认任务是选择高级选项里面的请求头 修改为LogStatistic 然后就能超…

Odrive 学习系列四:如何使用脚本自动初始化odrive配置

一、背景: 在学习markbase的教程后,发现odrive的初始化配置命令确实有点多。尽管odrive有自动补全: 且可以通过 ctrl + → 来快速补全: 但是对初学者而言,仍旧有比较大的工作量。 而针对于此,我们可以通过powershell脚本的方式来解决这个问题。 二、设计初始化…

接口测试 03 -- 接口自动化思维 Requests库应用

1. 接口自动化思维梳理 1.1接口自动化的优点 接口测试自动化&#xff0c;简单来讲就是功能测试用例脚本化然后执行脚本&#xff0c;产生一份可视化测试报告。不管什么样的测试方式&#xff0c;都是为了验证功能与发现 BUG。那为什么要做接口测试自动化呢&#xff1f;一句话概括…

项目解决方案:多地医馆的高清视频监控接入汇聚联网

目 录 一、背景 二、建设目标及需求 1.建设目标 2.现状分析 3.需求分析 三、方案设计 1.设计依据 2.设计原则 3.方案设计 3.1 方案描述 3.2 组网说明 四、产品介绍 1.视频监控综合资源管理平台介绍 2.视频录像服务器和存储 2.1概述 2.2存储设计 …

51单片机流水灯

**led 介绍**LED是“Light Emitting Diode”的缩写&#xff0c;即发光二极管。它是一种半导体器件&#xff0c;能够将电能转化为可见光。LED灯通常由LED芯片、封装材料、铝基板和灯罩等部件组成。 **LED灯具有以下特点&#xff1a;** 节能&#xff1a;LED灯具有较高的光电转换…

oracle篇—19c新特性自动索引介绍

☘️博主介绍☘️&#xff1a; ✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ ✌✌️擅长Oracle、MySQL、SQLserver、Linux&#xff0c;也在积极的扩展IT方向的其他知识面✌✌️ ❣️❣️❣️大佬们都喜欢静静的看文章&#xff0c;并且也会默默的点赞收藏加关注❣…

Go 知识slice

Go 知识slice 1. 什么是slice2. slice 基础2.1 定义 2.2 实现原理2.2.1 make 创建2.2.2 切片 创建 2.3 操作2.3.1 append 追加2.3.2 表达式切片2.3.3 扩展表达式2.3.4 扩容2.3.5 拷贝 3. 测试一下3.1 len && cap3.2 append && 扩容3.3 切片表达式 1. 什么是sli…

Vue2移动端项目使用$router.go(-1)不生效问题记录

目录 1、this.$router.go(-1) 改成 this.$router.back() 2、存储 from.path&#xff0c;使用 this.$router.push 3、hash模式中使用h5新增的onhashchange事件做hack处理 4、this.$router.go(-1) 之前添加一个 replace 方法 问题背景 &#xff1a; 在 Vue2 的一个移动端开发…

Docker安装与启动

Docker概述 Docker是一个快速交付应用、运行应用的技术&#xff1a; 可以将程序及其依赖、运行环境一起打包为一个镜像&#xff0c;可以迁移到任意Linux操作系统运行时利用沙箱机制形成隔离容器&#xff0c;各个应用互不干扰启动、移除都可以通过一行命令完成&#xff0c;方便…

AttributeError: module ‘numpy‘ has no attribute ‘float‘解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

YOLOv5改进系列(27)——添加SCConv注意力卷积(CVPR 2023|即插即用的高效卷积模块)

【YOLOv5改进系列】前期回顾: YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析 YOLOv5改进系列(1)——添加SE注意力机制

【Docker】安装Nginx容器并部署前后端分离项目

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《Docker实战》。&#x1f3af;&#x1f3af; &…

爬虫requests+综合练习

Day2 - 1.requests第一血_哔哩哔哩_bilibili requests作用&#xff1a;模拟浏览器发请求 requests流程&#xff1a;指定url -> 发起请求 -> 获取响应数据 -> 持续化存储 爬取搜狗首页的页面数据 import requests# 指定url url https://sogou.com # 发起请求 resp…

Three.JS教程1 环境搭建、场景与相机

Three.JS教程1 环境搭建、场景与相机 一、Three.JS简介二、环境搭建1. 开发准备2. 安装 three.js3. 新建文件index.htmlmain.js 4. 关于附加组件5. 启动 三、创建场景1. 场景的概念2. 相机的概念3. 相机的几个相关概念&#xff08;1&#xff09;视点&#xff08;Position&#…

【redis13】集群前奏:sentinel模式

1.哨兵sentinel引入背景 我们现在来思考一个问题&#xff1a;如何实现服务的高可用。我们首先想到至少要满足两个要求&#xff1a;1.服务端能够实现主从自动切换&#xff1b;2.对于客户端来说&#xff0c;如果发生了主从切换&#xff0c;则能够自动连接到最新的master节点。 我…