缓存技术(缓存穿透,缓存雪崩,缓存击穿)

大家好 , 我是苏麟 , 今天聊一聊缓存 . 

这里需要一些Redis基础 (可以看相关文章等)

本文章资料来自于 : 黑马程序员  如果想要了解更详细的资料去黑马官网查看

前言:什么是缓存?

缓存,就是数据交换的 缓冲区 (称作Cache [ kæʃ ] ),俗称的缓存就是缓冲区内的数据,是存贮数据的临时地方,读写性能较高。一般从数据库中获取,存储于本地


为什么要使用缓存

缓存的作用

  1. 速度快
  2. 降低后端负载
  3. 提高读写效率,降低响应时间

缓存的成本

  1. 数据一致性成本
  2. 代码维护成本
  3. 运维成本

如何使用缓存

浏览器缓存:主要是存在于浏览器端的缓存

应用层缓存:可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存

数据库缓存:在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中

CPU缓存:当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存


实现缓存

Redis简单实现

没使用缓存之前

@GetMapping("/{id}")
public Result queryShopById(@PathVariable("id") Long id) {//这里是直接查询数据库return shopService.queryById(id);
}

 使用缓存

    @GetMapping("/{id}")public Result queryShopById(@PathVariable("id") Long id) {String key = "cache:shop:" + id;// 1.从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 4.不存在,根据id查询数据库Shop shop = getById(id);// 5.不存在,返回错误if (shop == null) {return Result.fail("店铺不存在!");}// 6.存在,写入redisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop));// 7.返回return Result.ok(shop);}

缓存流程图 

缓存更新策略

缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适。

内存淘汰:redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)

超时剔除:当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存

主动更新:我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题

数据库缓存不一致解决方案

由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在,其后果是:

用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢?有如下几种方案

Cache Aside Pattern 人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案

Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理

Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致

数据库和缓存不一致采用什么方案

综合考虑使用方案一,但是方案一调用者如何处理呢?这里有几个问题

操作缓存和数据库时有三个问题需要考虑:

如果采用第一个方案,那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大,我们可以把缓存删除,等待再次查询时,将缓存中的数据加载出来

  • 删除缓存还是更新缓存?

    • 更新缓存:每次更新数据库都更新缓存,无效写操作较多

    • 删除缓存:更新数据库时让缓存失效,查询时再更新缓存

  • 如何保证缓存与数据库的操作的同时成功或失败?

    • 单体系统,将缓存与数据库操作放在一个事务

    • 分布式系统,利用TCC等分布式事务方案

应该具体操作缓存还是操作数据库,我们应当是先操作数据库,再删除缓存,原因在于,如果你选择第一种方案,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。

  • 先操作缓存还是先操作数据库?

    • 先删除缓存,再操作数据库

    • 先操作数据库,再删除缓存

实现商铺和缓存与数据库双写一致

核心思路如下:

修改ShopController中的业务逻辑,满足下面的需求:

根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间

根据id修改店铺时,先修改数据库,再删除缓存

修改重点代码1:修改ShopServiceImpl的queryById方法

设置redis缓存时添加过期时间

    @GetMapping("/{id}")public Result queryShopById(@PathVariable("id") Long id) {String key = "cache:shop:" + id;// 1.从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 4.不存在,根据id查询数据库Shop shop = getById(id);// 5.不存在,返回错误if (shop == null) {return Result.fail("店铺不存在!");}// 6.存在,写入redisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop),30L, TimeUnit.MINUTES);// 7.返回return Result.ok(shop);}

修改重点代码2

代码分析:通过之前的淘汰,我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题

    @Override@Transactionalpublic Result update(Shop shop) {Long id = shop.getId();if (id == null) {return Result.fail("店铺id不能为空");}// 1更新数据库updateById(shop);// 2.删除缓存stringRedisTemplate.delete(key:CACHE_SHOP_KEY + id);return Result.ok();}

缓存穿透

缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。

常见的解决方案有两种:

  • 缓存空对象

    • 优点:实现简单,维护方便

    • 缺点:

      • 额外的内存消耗

      • 可能造成短期的不一致

  • 布隆过滤

    • 优点:内存占用较少,没有多余key

    • 缺点:

      • 实现复杂

      • 存在误判可能 

缓存空对象思路分析:当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了

布隆过滤:布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,

假设布隆过滤器判断这个数据不存在,则直接返回

这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突

编码解决缓存穿透问题

核心思路如下:

在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的

现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,欧当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

 修改代码

    @GetMapping("/{id}")public Result queryShopById(@PathVariable("id") Long id) {String key = "cache:shop:" + id;// 1.从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}//shopJson 为 "" 的时候if (shopJson != null) {return Result.ok("店铺不存在");}// 4.不存在,根据id查询数据库Shop shop = getById(id);// 5.不存在,返回错误if (shop == null) {stringRedisTemplate.opsForValue().set(key, "",2L, TimeUnit.MINUTES);}// 6.存在,写入redisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop),30L, TimeUnit.MINUTES);// 7.返回return Result.ok(shop);}

小总结:

缓存穿透产生的原因是什么?

  • 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力

缓存穿透的解决方案有哪些?

  • 缓存null值

  • 布隆过滤

缓存雪崩

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案:

  • 给不同的Key的TTL添加随机值

    @GetMapping("/{id}")public Result queryShopById(@PathVariable("id") Long id) {String key = "cache:shop:" + id;// 1.从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}//shopJson 为 "" 的时候if (shopJson != null) {return Result.ok("店铺不存在");}// 4.不存在,根据id查询数据库Shop shop = getById(id);// 5.不存在,返回错误if (shop == null) {stringRedisTemplate.opsForValue().set(key, "",(2L + new Random().nextInt(5)), TimeUnit.MINUTES);}// 6.存在,写入redisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop),30L, TimeUnit.MINUTES);// 7.返回return Result.ok(shop);}
  • 利用Redis集群提高服务的可用性

请看Redis集群配置的相关文章

  • 给缓存业务添加降级限流策略

这里请看SpringCloud中降极限流策略

  • 给业务添加多级缓存

这里请看SpringCloud中多级缓存的相关知识

缓存击穿

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无 数的请求访问会在瞬间给数据库带来巨大的冲击。

常见的解决方案有两种:

  • 互斥锁
  • 逻辑过期

逻辑分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此 时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时 候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数 据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数 据库代码,对数据库访问压力过大

 

解决方案一、使用锁来解决:

因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。

假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

解决方案二、逻辑过期方案

方案分析:我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。

我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。

这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。

进行对比

互斥锁方案:由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响

逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦

 利用互斥锁解决缓存击穿问题

核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询

如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿

操作锁的代码:

核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。

private boolean tryLock(String key) {Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);
}private void unlock(String key) {stringRedisTemplate.delete(key);
}

操作代码:

public Shop queryWithMutex(Long id)  {String key = CACHE_SHOP_KEY + id;// 1、从redis中查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get("key");// 2、判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//判断命中的值是否是空值if (shopJson != null) {//返回一个错误信息return null;}// 4.实现缓存重构//4.1 获取互斥锁String lockKey = "lock:shop:" + id;Shop shop = null;try {boolean isLock = tryLock(lockKey);// 4.2 判断否获取成功if(!isLock){//4.3 失败,则休眠重试Thread.sleep(50);return queryWithMutex(id);}//4.4 成功,根据id查询数据库shop = getById(id);// 5.不存在,返回错误if(shop == null){//将空值写入redisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);//返回错误信息return null;}//6.写入redisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);}catch (Exception e){throw new RuntimeException(e);}finally {//7.释放互斥锁unlock(lockKey);}return shop;}

利用逻辑过期解决缓存击穿问题

需求:修改根据id查询商铺的业务,基于逻辑过期方式来解决缓存击穿问题

思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

如果封装数据:因为现在redis中存储的数据的value需要带上过期时间,此时要么你去修改原来的实体类,要么你

步骤一、

新建一个实体类,我们采用第二个方案,这个方案,对原来代码没有侵入性。

@Data
public class RedisData {private LocalDateTime expireTime;private Object data;
}

步骤二、

ShopServiceImpl 新增此方法,利用单元测试进行缓存预热

    private void saveShop2Redis(Long id, Long expireSeconds) {//1.查詢店鋪信息Shop shop = getById(id);//2.封裝逻辑过期时间RedisData redisData = new RedisData();redisData.setData(shop);redisData.setExpireSeconds(LocalDateTime.now().plusSeconds(expireSeconds));//3.写入RedisstringRedisTemplate.opsForValue().set("lock:" + id, JSONUtil.toJsonStr(redisData));}

 在测试类中

    @Testvoid test() {shopService.saveShop2Redis(1L,10L);}

步骤三:正式代码

ShopServiceImpl

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {String key = CACHE_SHOP_KEY + id;// 1.从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isBlank(json)) {// 3.存在,直接返回return null;}// 4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(json, RedisData.class);Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);LocalDateTime expireTime = redisData.getExpireTime();// 5.判断是否过期if(expireTime.isAfter(LocalDateTime.now())) {// 5.1.未过期,直接返回店铺信息return shop;}// 5.2.已过期,需要缓存重建// 6.缓存重建// 6.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);// 6.2.判断是否获取锁成功if (isLock){CACHE_REBUILD_EXECUTOR.submit( ()->{try{//重建缓存this.saveShop2Redis(id,20L);}catch (Exception e){throw new RuntimeException(e);}finally {unlock(lockKey);}});}// 6.4.返回过期的商铺信息return shop;
}

这期就到这里 , 下期再见 !

晚安 !

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/63750.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言——多文件编程

多文件编程 把函数声明放在头文件xxx.h中,在主函数中包含相应头文件在头文件对应的xxx.c中实现xxx.h声明的函数 防止头文件重复包含 当一个项目比较大时,往往都是分文件,这时候有可能不小心把同一个头文件 include 多次,或者头…

十六、pikachu之SSRF

文章目录 1、SSRF概述2、SSRF(URL)3、SSRF(file_get_content) 1、SSRF概述 SSRF(Server-Side Request Forgery:服务器端请求伪造):其形成的原因大都是由于服务端提供了从其他服务器应用获取数据的功能&…

Spring容器及实例化

一、前言 Spring 容器是 Spring 框架的核心部分,它负责管理和组织应用程序中的对象(Bean)。Spring 容器负责创建、配置和组装这些对象,并且可以在需要时将它们提供给应用程序的其他部分。 Spring 容器提供了两种主要类型的容器&…

matlab绘制局部放大图

ZoomPlot是一个交互式的matlab局部绘图库,其github仓库地址为 https://github.com/iqiukp/ZoomPlot-MATLAB。在使用库之前需要先将库下载到本地,可以直接添加到matlab的库中,也可以放在项目文件中直接使用。 简单使用 其实使用这个库只需要…

【SpringCloud】SpringCloud整合openFeign

文章目录 前言1. 问题分析2. 了解Feign3. 项目整合Feign3.1 引入依赖3.2 添加注解3.3 编写Feign客户端3.4 测试3.5 总结 4. 自定义配置4.1 配置文件方式4.2 Java代码方式 5. Feign使用优化5.1 引入依赖5.2 配置连接池 6. Feign最佳实践6.1 继承方式6.2 抽取方式 前言 微服务远…

MySQL连接池配置及FullGC分析

本文主要讲述MySQL连接池配置不合适时,由于MySQL以虚引用的方式作为线程清理的后备手段,导致JVM年老代随时间缓慢增长,直至FullGC的问题。为了优化数据库连接池配置,使得JVM进行尽量少的FullGC导致服务故障,本文提供了…

解决springboot项目中的groupId、package或路径的混淆问题

对于像我一样喜欢跳跃着学习的聪明人来说,肯定要学springboot,什么sevlet、maven、java基础,都太老土了,用不到就不学。所以古代的聪明人有句话叫“书到用时方恨少”,测试开源项目时,编译总是报错&#xff…

为什么中国软件需要国产化?

国产化是指技术引进项目投产后所生产的产品中,国内生产件的数量占整件产品生产件数量。换句话说,软件国产化的占比,直接影响到技术是否会在某一个时点上被”卡脖子“。 随着国家经济的发展和技术水平的提高,国家整体实力大大增强…

跨足多领域:人脸美颜SDK在医疗、娱乐和安全中的应用案例

随着科技的不断发展,人脸美颜技术不再局限于满足用户的审美需求,而是在医疗、娱乐和安全领域展现出了广泛的应用前景。本文将深入探讨人脸美颜SDK 在这三个领域中的创新应用案例,展示其在不同场景中的独特价值和潜力。 一、医疗领域 1、皮…

2023腾讯全球数字生态大会预约报名入口

报名入口 2023腾讯全球数字生态大会即将开启,点击打开预约报名入口。 主题与介绍 主题 2023腾讯全球数字生态大会将聚焦产业未来发展新趋势,针对云计算、大数据、人工智能、安全、SaaS等核心数字化工具做关键进展发布,并联合生态伙伴推出最…

用Rust打印hello world!

步骤1 桌面新建1个名为 rustDemo 的文件夹(文件夹名字随便取) 步骤2 打开新建的文件夹,在地址输入栏输入 cmd 按回车键进入命令行窗口 步骤3 打开编译器,按 Ctrl S,保存文件到 rustDemo 文件夹中,保存的…

【git】从一个git仓库迁移到另外一个git仓库

在远端服务器创建一个新的仓库 用界面创建&#xff0c;当然也可以用命令创建 拉去源仓库 git clone --bare git192.168.10.10:java/common.gitgit clone --bare <旧仓库地址>拉去成功以后会出现 进入到文件夹内部 出现下面信息&#xff1a; 推送到新的远端仓库 git …

【IOTE】物联网射频模组和芯片级方案提供商——深圳信驰达科技将精彩亮相IOTE物联网展

►►►强势来袭 Strong Attack 主物联场&#xff0c;相约深圳&#xff1b;2023&#xff0c;共论商机&#xff01;IOTE2023第二十届国际物联网展深圳站将于2023年9月20-22日在深圳国际会展中心(宝安新馆)开展&#xff01;汇聚全球超800家参展企业&#xff0c;呈现更多数字化纷呈…

C# PaddleDetection yolo 印章检测

效果 项目 代码 using OpenCvSharp; using OpenCvSharp.Extensions; using Sdcb.PaddleDetection; using Sdcb.PaddleInference; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq…

【数据结构】 二叉树面试题讲解->贰

文章目录 &#x1f30f;引言&#x1f384;[二叉树遍历](https://www.nowcoder.com/practice/4b91205483694f449f94c179883c1fef?tpId60&&tqId29483&rp1&ru/activity/oj&qru/ta/tsing-kaoyan/question-ranking)&#x1f431;‍&#x1f464;题目描述&#…

1.(python数模)单函数读取常用文件

Python单函数读取常用文件 代码如下&#xff1a; import pandas as pd# 读取数据文件 def readDataFile(readPath): # readPath: 数据文件的地址和文件名try:if (readPath[-4:] ".csv"):dfFile pd.read_csv(readPath, header0, sep",") # 间隔符为逗…

音频——I2S TDM 模式(六)

I2S 基本概念飞利浦(I2S)标准模式左(MSB)对齐标准模式右(LSB)对齐标准模式DSP 模式TDM 模式 文章目录 TDM formatTDM format ATDM format BTDM format C总结 TDM format TDM 分为两种常用操作模式&#xff1a;TDM A mode 和 TDM B mode, 统称为TDM mode 基于 TDM mode&#x…

【App端】uni-app使用百度地图api和echarts省市地图下钻

目录 前言方案一&#xff1a;echarts百度地图获取百度地图AK安装echarts和引入百度地图api完整使用代码 方案二&#xff1a;echarts地图和柱状图变形动画实现思路完整使用代码 方案三&#xff1a;中国地图和各省市地图下钻实现思路完整使用代码 前言 近期的app项目中想加一个功…

新版Mongodb(6.0以上)找不到mongo.exe

安装目录下/bin目录中&#xff0c;没有mongo.exe文件&#xff0c;只有mongod和mongos&#xff0c;以及一个powershell命令脚本。 原因在于&#xff0c;mongodb6.0以后做出了重大改变&#xff0c;mongodb已经不再默认为你安装shell工具&#xff0c;因此需要安装一个额外的shell…

FFmpeg5.0源码阅读——FFmpeg大体框架(以GIF转码为示例)

摘要&#xff1a;前一段时间熟悉了下FFmpeg主流程源码实现&#xff0c;对FFmpeg的整体框架有了个大概的认识&#xff0c;因此在此做一个笔记&#xff0c;希望以比较容易理解的文字描述FFmpeg本身的结构&#xff0c;加深对FFmpeg的框架进行梳理加深理解&#xff0c;如果文章中有…