muduo 网络库源码解析和使用

1. base 模块

1.1 API

1.1.1 eventfd
int eventfd(unsigned int initval, int flags);

(1)类似信号量;其内部保存了一个 uint64_t 计数器 count,使用 initval 初始化;

(2)read

没有设置 EFD_SEMAPHORE 并且 count 不为 0,返回 count 值,并将 count 设为 0;
如果 count 值为 0,阻塞直到其非 0; 设置 EFD_NONBLOCK 后,返回 EAGAIN

(3)write 调用整数相加,count 最大值为 (64位最大值 - 1),如果超过该值会阻塞;

(4)IO 复用事件

可读:计数器大于 0
可写:不会阻塞的情况下,至少还能加 1;

(5)主要作用:用来替换只作为发出事件信号的 pipe

参考网址:https://www.man7.org/linux/man-pages/man2/eventfd.2.html

1.1.2 timerfd

参考网址:https://www.man7.org/linux/man-pages/man2/timerfd_create.2.html
(1)timerfd_create

创建定时器对象

(2)timerfd_settime

启动 / 停止定时器( new_value.it_value 设为非 0 或 0,该值是相对值,相对调用时的当前时间)

struct itimerspec
{struct timespec it_interval;struct timespec it_value;
};

it_interval 设为 0,只触发一次;非 0 会重复触发;

(3)交互

可读:上次调用 timerfd_settime() 启动后,触发一次或多次

调用 read 时,返回 uint64_t 整数,表明触发次数;

1.2 其他类

1.2.1 ThreadPool
ThreadPool任务队列:生产者消费者模型(1) setMaxQueueSize 设置队列的最大大小(2) start 创建并启动 numThreads 个线程,都放入了 threads_ 中,线程函数为 runInThread(3) run 是向任务队列中添加任务;(4) runInThread 不断调用 take 函数,从任务队列中取出任务并执行;(如果有 threadInitCallback_,需要先执行该初始化函数)
1.2.2 CountDownLatch
CountDownLatch 
倒计时,需要显式初始化指明最开始的计数值;内部封装了一个条件变量和一个锁(只有自己使用),当计数减为 0 时,会等待;(1) countDown 函数;计数减1,若减为 0,则唤醒所有阻塞线程;(2) wait 函数;等待 当前计数变为 0;(若为 0,则返回);
1.2.3 Thread
Threadtemplate< class R, class... Args > 
class function<R(Args...)>;
R 为返回值类型,Args 为可变参数(1) start; 内部调用了 pthread_create 创建线程,使用初始计数为 1 的 CountDownLatch 来确保获取到 tid 后再返回(2) join; 内部调用了 pthread_join(3) ~Thread; 不会等待线程结束,如果没有调用 join 函数,就会调用 pthread_detach;

(1)pthread_creategettid 区别

pthread_create 返回的是 pthread_t 类型,是一个进程中各个线程之间的标识号,对于这个进程内是唯一的,而不同进程中,每个线程返回线程 ID 的可能是一样的。glibc 的 Pthreads 只保证同一进程内,同一时刻的各个线程 id 不同,不能保证同一进程先后多个线程具有不同 id;

在 Linux 下,建议使用gettid 的返回值作为线程 id;其类型是 pid_t,保证任何时刻都是全局唯一的,0 是非法值;
gettid 获取的 线程ID 和 PID 是有关系的,因为在linux中线程其实也是一个进程(clone)。在一个进程中,主线程的线程ID 和进程 PID 是一样的,gettid是不可移植的。

(2)为了效率,使用 thread local 缓存了线程 tid

// 内部调用 gettid() ,并缓存了线程 tid;
CurrentThread::tid()		

调用 fork 如何保证子进程不会看到这个缓存结果?

使用 pthread_atfork 注册回调函数 child 清空缓存,重新调用 tid()

1.2.4 Condition

对条件变量进行了封装;MutexLockholder_ 中记录了当前持有锁的线程 TID;

(1)Condition 构造时,MutexLock 已经构造完毕,当该线程阻塞在该条件变量时,其他线程获取到锁时,需要改变 holder_ 值;

直观想法是,在调用 pthread_cond_wait 前后重新对 holder_ 进行赋值,这里采用了 UnassignGuard 的思想,构造时,将 holder_ 赋值为 0,析构时,赋值为当前线程 TID;

1.2.5 ThreadLocal

(1)内部创建了 pthread_key_t 类型变量;

1.2.6 FixedBuffer

内部为 固定大小的字符数组 char data_[SIZE]

向 Buffer 中写数据时调用 memcpy

cur_ 指向当前待写入的位置;

全初始化为 0,内部调用 memset

1.2.7 AsyncLogging

使用 unique_ptr 指向缓存块 Buffer

双缓存方案,前端和后端分别使用两块缓存;

(1)构造时

初始化一个后台线程,申请两块内存,buffers_ 数组大小设置为 16;

(2)start

启动后台线程,这里 CountDownLatch 的作用是确保线程函数执行后,再退出 (确保在线程中 running_ 一定为 Ture ,确保不发生重排序? );

(3)append

buffers_ 为当前写满的缓存块数组;

前端调用,向缓存区写入 Log,写满缓存后,唤醒后台线程清理缓存;

currentBuffer_ 写满后会替换为 nextBuffer_,若其也写满则申请新的缓存块;

(4)threadFunc

持有两个空的缓存块,newBuffer1newBuffer2,局部变量数组 buffersToWrite

后端线程调用(若当前 buffers_ 为空,则阻塞;每隔一段时间醒来或可有前端提前唤醒);

currentBuffer_ 放入 buffers_,使用 newBuffer1替换 currentBuffer_ ,交换 buffersToWritebuffers_,若 nextBuffer_ 为空,使用 newBuffer2 替换;

buffersToWrite 中缓存块写入日志文件,对 newBuffer1newBuffer2 重新赋值,清空其他缓存块;

2. net 模块

2.1 时间相关类

2.1.1 Timestamp

内部使用 int64_t 表示,以 微秒 为单位

(1)now() 静态方法,返回 Timestamp(调用时的当前时间构造)

内部调用 gettimeofday(&tv, NULL);

会计算从1970年1月1号00:00(UTC)到当前的时间跨度

struct timeval
{__time_t tv_sec;		/* Seconds.  */__suseconds_t tv_usec;	/* Microseconds.  */
};

time() 返回的 time_t ,是以秒为单位的;

(2)toFormattedString

gmtime_r 将 time_t 转换为年月日时分秒的形式;

2.1.2 Timer

时间事件,包含 到期时间、时间回调函数、时间间隔 interval_、是否可重复触发、sequence_(使用静态原子整数生成序列号)

(1)run 调用时间回调函数

(2)restart( now ) 将到期时间改为 now + interval_

2.1.3 TimerId

包含一个指向 Timer 的指针和一个 sequence_

2.1.4 TimerQueue

内部使用 set 作为 TimerList timers_,按到期时间 Timestamp 排序各时间事件

(1)构造函数

创建 timerfd 并使用 timerfd 设置 Channel,设置其读回调函数为 handleRead

(2)handleRead

  • 1.获取所有过期的时间事件,从 activeTimers_ 中删除这些事件;

  • 2.清空 cancelingTimers_,调用每个事件对应的回调函数

  • 3.调用 reset 函数

(3)insert

将 Timer 根据到期时间插入到 timers_activeTimers_ 中;

其返回值标志,新加入的 Timer 是否是第一个元素(即到期时间最早的)

(4)reset

将可重复触发并且不在 cancelingTimers_ 中的时间事件调用 restart,重新插入到 timers_activeTimers_ 中;
否则就进行删除

如果当前 timers_ 不为空,获取下次到期时间,如果该时间有效,使用该时间调用 resetTimerfd 设置下次定时器到期时间;

(5)resetTimerfd 设置时钟下次到期时间,最小为 100 微妙

(6)addTimer

新构造一个 Timer(动态创建)

(7)addTimerInLoop

对时间事件调用 insert

(8)cancelInLoop

若其在 activeTimers_ 中,则将其从中删除,并释放;
否则,若 callingExpiredTimers_ 为 True,将其加入到 cancelingTimers_ 中;(只有在 handleRead中的第 2 步才有可能发生)

2.2 Channel

封装了 一个 fd 对应的事件及回调函数;(只属于一个 EventLoop)

events_ 表示 fd 上的注册事件
revents_ 接收到的事件(触发的事件)
封装了一些 readCallback_ 回调函数;
index_ 表明是否添加到了 Poller 中(-1 为未添加,1 为已添加,2 为已删除)

(1)handleEvent 根据 revents_ 调用相应的回调函数

(2)disenableXXX/enableXXX 方法都会调用 update() 注册读 / 写事件

设置 addedToLoop_ 为 Ture
调用 EventLoop 的 updateChannel 函数

调用该方法时,必定是 loop 线程;

在 EventLoop 构造时,注册 timefd、wakefd 可读
客户端 Connector::connecting 中,注册 sockfd 可写
服务端 Acceptor::listen(),注册 listenfd 可读
回调函数中调用

在这里插入图片描述

2.3 Poller

IO 复用基类(纯虚基类)

channels_ 为哈希表,key 为 fd,val 为 channel

(1)poll

内部调用 epoll_wait
如果有就绪的事件,调用 fillActiveChannels

(2)fillActiveChannels

设置触发 channel 的 revents_
将当前触发的 channel,加入到 activeChannels_

(3)updateChannel

根据 channel 的 index_ 调用 epoll_ctl
如果 index_ 为 -1,需要添加到 channels_

(4)removeChannel

channels_ 中删除 channel;

2.4 事件循环类

2.4.1 EventLoop

在这里插入图片描述

记录下创建 EventLoop 的线程 threadId_

(1)loop

循环执行下面语句:

  1. 清空 activeChannels_
  2. 调用 poll
  3. 调用 activeChannels_ 中的每个 channel 的handleEvent
  4. 调用 doPendingFunctors

(2)doPendingFunctors

callingPendingFunctors_ 设为 Ture
使用 swap 技巧减少了临界区;
调用 pendingFunctors_ 中的每个函数;
callingPendingFunctors_ 设为 False

(3)runInLoop

如果调用线程是 threadId_,直接运行函数;否则,调用 queueInLoop

(4)queueInLoop

将 回调函数 加入到 pendingFunctors_ 中(此步有锁保护)
如果调用线程不是 threadId_ ,调用 wakeup

(5)wakeup

eventfd_ 加 1

(6)updateChannel

断言调用线程为 threadId_
调用 poller 的 updateChannel

(7)添加定时器事件的流程如下图所示(在非 IO 线程中)
在这里插入图片描述

等定时器到期后,会从 poll 中返回,紧接着下一步调用 TimerQueue::handleRead(),然后调用定时器任务的回调函数;

(8)quit

设置 quit_ = true(上图中 loop 的循环条件为该变量)
如果当前不是事件循环的线程,则调用 wakeup() 唤醒事件循环

2.4.2 EventLoopThread

创建额外的一个线程专门执行 loop,并把 EventLoop 对象返回给用户;

2.4.3 EventLoopThreadPool

setThreadNum 设置线程数量

(1)start

创建并启动 numThreads_ 个 EventLoopThread;

2.5 TCP 服务端相关类

2.5.1 InetAddress

封装了 IPv4 或 IPv6 的 ip 地址和端口号;
内部数据为一个 union,为 sockaddr_insockaddr_in6

strchr() 用于查找字符串中的一个字符,并返回该字符在字符串中第一次出现的位置

(1)resolve(只能解析 IPv4)

调用 gethostbyname_r 解析主机名为 IP 地址,需要为其提供缓存供其内部查找过程使用;

链接: link

2.5.2 Socket

封装 socket fd;及 socket 选项(保活机制等)

listen 等函数的返回值检查工作

析构时关闭 fd(RAII,该类是 fd 的所有者,fd 的创建由 SocketsOps 封装的系统调用完成)

2.5.3 Buffer

vector<char> buffer_,读/写索引;类似循环数组,但这里是通过拷贝的方式实现的;

默认大小为 1024 + 8;

预留区(初始为 8 byte) | 读区 | 写区

(1)append
ensureWritableBytes 判断当前可写的空间是否大于 len

拷贝数据到写区,并 writerIndex_ += len

网络序和主机序互换通过 __bswap_ 函数完成

(2)makeSpace

当前可用空间是否大于 len,若是,则将读区的数据拷贝到数组最前面;

否则,调用 resize

(3)prepend

向预留区写入数据,并向前调整 readerIndex_ -= len

(4)retrieveAsStringreadInt32

读取完当前全部字节时,会调用 retrieveAll 将读/写索引设置为初始状态

(5)readFd

直接从 fd 读取数据到 Buffer 中,内部调用了 readv 函数

内部使用了额外的栈缓存char extrabuf[65536];,超出 Buffer 的数据会暂时存储在该缓存中,之后调用 makeSpace 扩容后再进行拷贝;

(6)shrink 使用 swap 技巧减少 Buffer 数组的空间占用;

2.5.4 TcpConnection

保存两个端点的地址
新建 Channel,并设置了 connectfd 的各个回调函数
输入 和 输出 Buffer

highWaterMark_ 高水位标志

(1)sendInLoop

如果当前写缓存中没有数据且没有注册写事件,则直接发送数据;
否则,会将数据向拷贝到 outputBuffer_ 中,如果没有注册写事件会进行注册;(channel_->enableWriting()

(2)handleRead

调用 Buffer 的 readFd 将数据保存到 inputBuffer_
如果读取到了数据,调用 messageCallback_业务逻辑
如果 n == 0,调用 handleClose()

(3)handleWrite

如果将 outputBuffer_ 的数据全部发送完毕,就会删除写事件;
调用 writeCompleteCallback_业务逻辑

(4)connectEstablished

  1. 状态从 kConnecting 改为 kConnected
  2. channel_ 绑定自身的智能指针,并注册读事件\
  3. 调用 connectionCallback_业务逻辑

(5)startRead() / stopRead

调用 runInLoop 注册或删除读事件

(6)send

当前状态为 kConnected 时,通过runInLoopsendInLoop 添加到事件循环的中;
否则,什么也不做;(即关闭写端后再调用 send 是无效的)

(7)handleClose

删除所有注册事件
调用 connectionCallback_
调用 closeCallback_业务逻辑

(8)shutdown(只是关闭写端)

设置状态为 kDisconnecting
如果当前注册了写事件,则什么也不做(即等待数据发送完毕,在写回调中会处理这种情况)
否则,调用 shutdown 系统调用关闭写端

(9)什么时候关闭读端?如何关闭?

注意:Socket 析构时会调用 close 系统调用,因此其析构时会关闭读写端(即整个连接);

TcpConnection 构造时,会有 socket_(new Socket(sockfd)),因此 TcpConnection 析构时会关闭整个连接;

std::unique_ptr<Socket> socket_

被动关闭时,相当于直接调用了 close 系统调用;

2.5.5 Acceptor

封装 listenfd 作用(非阻塞)

(1)listen() 向 IO 复用注册读事件

必须设置 newConnectionCallback_,否则收到连接就会关闭;

(2)当 accept 出现错误 EMFILE 时(本进程的文件描述符达到上限,无法为新连接创建 socket 文件描述符,因为新连接还在等待处理,epoll_wait 会立即返回,造成忙等待)

构造时创建了一个额外的空闲文件描述符 idleFd_

关闭 idleFd_ ,再调用 accept ,再关闭 idleFd_,最后重新打开一个额外的空闲文件描述符(在多线程中不保证正确,猜想是如果不加临界保护,关闭 idleFd_,其他线程可能正好调用 accept ,此时并未出错,但当前线程又陷入困境)

2.5.6 TcpServer

创建 EventLoopThreadPool
设置 acceptor_ 的回调函数 newConnection
维护各个连接的哈希表,key 为IP、Port、连接号组成的 string,val 为 conn 指针;

(1)newConnection

从线程池轮次获得 EventLoop (如果未设置线程池数量会返回 baseloop );
新建 TcpConnection,设置其一系列回调函数;(创建 TcpConnection 时会新建 Channel)
在对应事件循环 ioLoop 中调用 TcpConnection 的 connectEstablished 方法,注册读事件;

(2)start

调用线程池的 start
loop_ 中调用 acceptor_listen() 函数

(3)setThreadNum

设置线程池中线程的数量,如果不设置将只有一个线程,即一个事件循环;

(4)此处逻辑暗示了:主线程负责 listenfd ,每个子线程轮次负责 connfd

具体读写处理由 loop 中就绪事件的回调函数完成(业务逻辑由 Connect 等类中的回调函数完成,可以看作是在读写回调函数中又调用了业务逻辑函数)

注册修改事件大多都会放到 pendingFunctors_

(5)可以在一个 loop 上运行多个服务端,即监听多个 listenfd;

2.6 客户端

在这里插入图片描述

2.6.1 Connector

(1)start / startInLoop

在 loop 中调用 connect() 函数

(2) connect()

创建 sockfd,调用 connect 函数
如果立即建立或正在建立过程中,调用 connecting(注册写事件)

handleWrite 中如果出错或是服务端、客户端都位于同一主机,调用 retry
否则,成功建立连接,调用 newConnectionCallback_,即 TcpClient 中的 newConnection

(3)retry

关闭 sockfd
调用 runAfter 设置定时器事件(到期后的回调函数是 startInLoop

2.6.2 TcpClient

新建 Connector
设置 Connector 的 connectionCallback_

(1)newConnection

新建 TcpConnection,设置其一系列回调函数;
调用 connectEstablished 注册读事件(注意回调、事件都是由 TcpConnection 管理)

(2)connect()

调用 Connector 的start

(3)disconnect()

调用连接的 connection_->shutdown();(有锁保护)

3. 使用教程

(1)IO 复用其实是复用线程,而非 IO 连接;

(2)每千兆比特每秒的吞吐量配一个 event loop;

3.1 本质

1.连接的建立
2.连接的断开
3.消息到达
3.5 消息发送完毕(将数据写入操作系统缓冲区)

在 TcpConnection 中的四个回调函数分别对应这几个事件;

3.2 muduo 线程模型

在这里插入图片描述
上图为 muduo 库的默认线程模型,适合小规模的计算;

如果有大量计算任务,可以再加一个线程池,如下所示:
在这里插入图片描述

3.3 非阻塞 IO 为什么必须使用应用缓存?

(1)接收时,数据可能没有一次性收全,已经收到的数据累积到 Buffer 中;

(2)发送数据时,只发送了一部分就填满了操作系统发送缓冲区,阻塞时间取决于对方接收数据的速率,剩余数据应该复制到应用缓冲区中;

3.4 IO 复用为何最好不要搭配阻塞 IO?

以下假设在 Berkeley 的实现中;

假设 listenfd 为阻塞 IO,以 accpet 为例,select 返回 listenfd 可读后,可能并不会马上调用 accpet这也是维护一个已完成连接队列的原因),当客户在这期间中止该连接时(收到客户的 RST)这个已完成的连接被服务器 TCP 驱除出队列,如果此时队列中没有其他已完成的连接时,之后调用 accpet 时会一直阻塞,直到其他某个客户建立一个连接为止;

3.5 chat 高性能程序设计

(1)利用了 ThreadLocalSingleton

即每个事件循环都有自身线程的一个连接队列;这样在每个事件循环的内部分发时,由于是单线程就不需要加锁;

只需在 Server 端遍历各个 loop 时加锁即可;此步的速度比较快,因为只需于在事件循环中注册函数即可,不用进行等待;

(2)在设计并发的 Hub 程序时,也可以参考上述思路

每个事件循环都维护自己的 std::map<string, Topic>

(3)multiplexer

在没有连接到后台服务器时,接收到的连接都放弃掉

3.6

(1)Channel 中回调函数如何被调用?
在这里插入图片描述

(2)在实现 TimerQueue 中,不能直接使用 Timestamp 为 Key,可能有多个 Timer 到期时间相同,解决办法是:使用 multiset 或者 设法区分 Key;

muduo 中使用 std::pair<Timestamp, Timer*> 作为 Key

(3)既然使用 wakeupfd 是为了唤醒事件循环去执行用户回调,那么 doPendingFunctors 为什么不直接放到 EventLoop::handleRead 中?

  1. 假设已经执行过 EventLoop::handleRead ,此时处理其他就绪事件回调函数,此时如果调用 queueInLoop ,由于当前处于 IO 线程且callingPendingFunctors_ = false,是无法调用 wakeup 的,即用户回调不能被及时处理;(要么必须得保证调用中不涉及 queueInLoop,需要约束用户,要么设法调用 wakeup
  2. 若把 doPendingFunctors 直接放到 EventLoop::handleRead ,那么想执行用户回调,必须先执行 wakeup 函数;需要执行三个系统调用,write-poll-read,如果把 doPendingFunctors 放到外面,那么这些就绪事件回调函数都可以直接使用这个 doPendingFunctors,节省系统调用;
    例如,removeConnectionInLoop 中就直接调用了 queueInLoop

3.6 为何在 removeConnectionInLoop 中调用了 queueInLoop 方法?

(1)这主要是为了延长 TcpConnection 声明周期,使用 queueInLoop 方法后,其生命期会延长到 doPendingFunctors 函数执行完毕;

若不使用 queueInLoop 而使用 runInLoop 时,在 removeConnectionInLoop 执行完毕后,引用计数就会降为 0,将会析构 TcpConnection ,从而析构 Channel,这会导致无法返回到 Channel::handleEvent 中;(如果直接使用 runInLoop ,在程序中的表现是,析构 Channel 会出错)

需要注意的是,调用方式为 closeCallback_(shared_from_this()); ,即使是引用传递但由于是右值,在函数执行完后就会析构;

(2)上述这种做法对 s06 的实现是必须的,但在 muduo 实现中,Channel 使用了弱引用,在调用前会升级成 shared_ptr,这就保证了在从 handleEvent 返回前,Channel 不会被析构,把这部分代码添加到 s06 中 TcpConnection 可以正常析构,那么在 muduo 实现中是否还有必要使用 queueInLoop 呢?

if (tied_)
{guard = tie_.lock();if (guard){handleEventWithGuard(receiveTime);}
}
// 在建立连接时,用细线绑定
void TcpConnection::connectEstablished()
{...channel_->tie(shared_from_this());...
}

在采用线程池的事件循环中,muduo 中处理被动关闭时的流程可能如下所示:
在这里插入图片描述
这里的 queueInLoop() 替换为 runInLoop 效果是相同的;对单线程事件循环而言,如果进行替换,会在 EventLoop 中执行完 connectDestroyed 后才返回到 TcpServer 处,逻辑上感觉没什么问题;
可能有问题的地方在于,在就绪事件回调函数中,删除了这个就绪事件,是否会造成迭代器失效等问题,muduo 中采用了复制的方式将就绪事件都保存到了 currentActiveChannel_;在源代码中修改运行部分测试程序后,暂未发现什么问题;

参考

《Linux 多线程服务端编程》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/636808.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Suricata-7.0 源码分析之流表建立FlowWorker

一、什么是Flow&#xff1f; 二、Flow是怎么建立的&#xff1f; 三、Flow建立的具体过程是什么&#xff1f; 一、什么是Flow&#xff1f;   在Suricata 7.0中&#xff0c;流Flow是指所有相同五元组&#xff08;协议&#xff0c;源IP&#xff0c;目的IP&#xff0c;源端口&am…

makefile里面的变量使用,系统变量

文章目录 makefile里面的变量使用 makefile里面的变量使用 calc:add.o sub.o multi.ogcc add.o sub.o multi.o calc.cpp -o calcadd.o:add.cppgcc -c add.cpp -o add.osub.o:sub.cppgcc -c sub.cpp -o sub.omulti.o:multi.cppgcc -c multi.cpp -o multi.oclean:rm -rf *.o cal…

Linux第32步_编译ST公司的TF-A源码

正点原子STM32MP157开发板使用的CPU型号是STM32MP157DAA1&#xff0c;而开发板硬件参考了ST公司的STM32MP157 EVK开发板&#xff0c;因此我们在移植的时候需要关注“stm32mp157d-ev1”。 一、了解SDK 包 ST公司会从ARM官方下载TF-A软件包&#xff0c;然后将STM32MP1 芯片添加…

算法总结——单调栈

纵有疾风起&#xff0c;人生不言弃。本文篇幅较长&#xff0c;如有错误请不吝赐教&#xff0c;感谢支持。 文章目录 一、单调栈的定义二、单调栈的应用&#xff1a;寻找左边第一个比它小的数单调栈的思想&#xff08;重点&#xff09;&#xff1a;寻找左边第一个比它小的数的下…

Unity常用的优化技巧集锦

Unity性能优化是面试的时候经常被问道的一些内容&#xff0c;今天给大家分享一些常用的Unity的优化技巧和思路&#xff0c;方便大家遇到问题时候参考与学习。 对啦&#xff01;这里有个游戏开发交流小组里面聚集了一帮热爱学习游戏的零基础小白&#xff0c;也有一些正在从事游…

(C语言)编译和链接

前言͟͟͞͞&#x1f48c;&#xff1a;对于现在的各种编译器而言许多都是好多个功能的集成&#xff0c;那么我们的代码到底是如何去实现的呢&#xff1f;难道我们的计算机可以直接读懂我们所写的代码&#xff0c;并运行吗&#xff1f;对于很多细心的小伙伴们可能会想这样的问题…

Spring Security 优化鉴权注解:自定义鉴权注解的崭新征程

文章目录 1. 引言2. Spring Security基础2.1 Spring Security概述2.2 PreAuthorize注解 3. 自定义鉴权注解的优势3.1 业务语义更明确3.2 参数化鉴权更灵活3.3 可维护性更好 4. 实现自定义鉴权注解4.1 创建自定义注解4.2 实现鉴权逻辑4.3 注册自定义注解和逻辑4.4 使用自定义注解…

Divisibility Problem-codefordes

题目链接&#xff1a;Problem - A - Codeforces 解题思路&#xff1a; 如果 a 能被 b整除&#xff0c;就不需要进行改变&#xff0c;直接输出0&#xff0c;否则输出((a / b) 1) * b - a&#xff0c;找到最小的能被b整除的数。 下面是c代码&#xff1a; #include<iostrea…

探索JAVA神秘运行机制:揭秘JVM内存区域

目录 1. 前文回顾 2.内存区域的划分 2.1 存放类的方法区 2.2 程序计数器 2.3 Java虚拟机栈 2.4 Java堆内存 2.5 其他内存区域 3. 核心内存区域运行流程 4. 总结 1. 前文回顾 上一篇我们一起探索了Java的整体运行流程&#xff0c;类加载器以及类的加载机制&#xff0…

去了字节跳动,才知道年薪 30w 的测试工程师有这么多?

&#x1f525; 交流讨论&#xff1a;欢迎加入我们一起学习&#xff01; &#x1f525; 资源分享&#xff1a;耗时200小时精选的「软件测试」资料包 &#x1f525; 教程推荐&#xff1a;火遍全网的《软件测试》教程 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1…

会体言一心文-码代-4202

简明版本 最近感悟就是在“常规赛”中&#xff0c;大部分奇技淫巧远不如官方教程。 我使用大模型工具快一年的时间所积累的经验远不如认真看看官方教程。 官方教程 里面有一点就可以秒99%的工具人&#xff0c;“文心一言7*24小时在线&#xff0c;伴你左右。 ” 结合文心一言…

中仕教育:考上选调生之后能不去吗?选调生和公务员哪个比较好?

选调生&#xff0c;是指经过选拔、培训、考核等一系列程序&#xff0c;选拔出的人才。选调生通常需要在基层锻炼一段时间&#xff0c;然后根据工作表现和能力得到提拔。 考上选调生之后能否不去&#xff0c;有以下两种情况。 1.如果通过选调笔试&#xff0c;但是并未参加后续…

2788.按分隔符拆分字符串

前言 力扣还挺上道&#xff08;bushi&#xff09;&#xff0c;今天第一次写每日一题&#xff0c;给了个简单等级的数组题&#xff0c;我只能说&#xff0c;首战告捷&#xff08;小白的呐喊&#xff09;&#xff0c;看看这每日一题我能坚持一天写出来&#xff0c; ok&#xff…

Javaweb之SpringBootWeb案例员工管理之新增员工的详细解析

SpringBootWeb案例 前面我们已经实现了员工信息的条件分页查询以及删除操作。 关于员工管理的功能&#xff0c;还有两个需要实现&#xff1a; 新增员工 修改员工 首先我们先完成"新增员工"的功能开发&#xff0c;再完成"修改员工"的功能开发。而在&q…

Self-RAG:通过自我反思学习检索、生成和批判

论文地址&#xff1a;https://arxiv.org/abs/2310.11511 项目主页&#xff1a;https://selfrag.github.io/ Self-RAG学习检索、生成和批评&#xff0c;以提高 LM 的输出质量和真实性&#xff0c;在六项任务上优于 ChatGPT 和检索增强的 LLama2 Chat。 问题&#xff1a;万能L…

10分钟完成权限系统全流程开发

背景 首先问下chatgpt,权限系统的模型有哪些&#xff1f; 基于上述的结论&#xff0c;我们选择基于角色的访问控制(RBAC)&#xff0c;请从数据库设计、接口文档、代码实现、单元测试四个方面分别详细描述每个部份需要实现的内容。 数据库实现 针对上述的数据库设计部份&#…

格局打开!前端未死,只是要求变高了

本文笔者会从以下几个方面分享&#xff0c;希望能够帮助正在迷茫的前端小伙伴提供一点思路&#xff01; 逛技术博客 不局限框架 全栈工程师兴起 关注前沿 写技术文章 录制前端视频 总结 2024年了&#xff0c;没工作的找到工作了吗&#xff1f;有工作的加薪了吗&#xff1f;加薪…

【高等数学之极限】

一、引言 我们先思考一下&#xff0c;上面三个表达式&#xff0c;是否可以将极限值直接代入求值&#xff0c;我们在计算之前需要先分析一下&#xff0c;如果将极限值代入&#xff0c;那么表达式将会变成什么形式? 经过上面的分析&#xff0c;我们发现第一个式子可以直接带入&a…

浪花 - 主页开发

一、简易版主页 1. 主页展示用户列表 <template><!--推荐用户列表--><van-cardv-for"user in userList":desc"user.profile":title"${user.username}(${user.planetCode})":thumb"user.avatarUrl"><template #…

VUE表单中多个el-upload上传组件共享回调函数解决方案

产品需求界面&#xff1a; 在产品配置页面表单中需要上传多个图片&#xff0c;项目中上传组件采用Element Plus 中的 el-upload&#xff0c;目前问题是每个上传组件都需要实现自己的回调&#xff0c;比如:on-change&#xff0c;采用官方推荐标准代码如下&#xff1a; <el-fo…