Prompt高级技巧:Few-Shots、COT、SC、TOT、Step-Back

CRISPE框架

图片

如图所示。所谓CRISPE框架,指的是:

  • CR:Capacity and Role(能力与角色)。你希望 ChatGPT 扮演怎样的角色。
  • I:Insight(洞察),背景信息和上下文。
  • S:(陈述),你希望 ChatGPT 做什么。
  • P:Personality(个性),你希望 ChatGPT 以什么风格或方式回答你。
  • E:Experiment(实验),要求 ChatGPT 为你提供多个答案。

如果我们要定义一个翻译诗词的 GPT 。我们可以这么写:

CR

你是一个擅长中文和英文的AI 工程师和数据科学家,擅长中文和英文相关的 AI 技术文章编写和翻译。

I

需要翻译的英文段落:

Spending lots of time thinking about different possible future scenarios and their probabilities might be captivating, but I suggest an absolutely different approach — to try to build your prototype yourself. First, it’s rather challenging and fun. Second, it will help us to look at our work in a more structured way. Third, it will give us an opportunity to try in practice one of the most cutting-edge approaches — LLM agents.

S

请将下面的英文翻译成中文,

P

要求语言生动活泼,简洁优雅。

E

给我三个结果。

Zero-shot

只是使用CRISPE,不增加示例样本,就是 zero-shot 。下面是这个任务的 zero-shot prompt:

你是一个擅长中文和英文的AI工程师和数据科学家,擅长中文和英文相关的 AI 技术文章编写和翻译。
请将下面的英文翻译成中文,要求语言生动活泼,简洁优雅。
需要翻译的英文段落:《见上面英文段落》
给我三个结果。
请输出翻译后的结果:

ChatGPT 3.5 输出:

  1. 花费大量时间思考不同可能的未来情景及其概率可能会吸引人,但我建议采取完全不同的方法——尝试自己建立原型。首先,这是相当具有挑战性和有趣的。其次,它将有助于我们以更有结构的方式审视我们的工作。第三,它将给我们一个机会实践最先进的方法之一——LLM代理。

  2. 花费大量时间思考不同可能的未来情景及其概率可能会引人入胜,但我建议采取一种完全不同的方法——尝试自己构建原型。首先,这是相当具有挑战性和有趣的。其次,它将帮助我们以更有结构的方式审视我们的工作。第三,它将为我们提供一个实践最尖端方法的机会——LLM代理。

  3. 花费大量时间思考不同可能的未来情景及其概率可能会令人着迷,但我建议尝试完全不同的方法——自己构建原型。首先,这非常具有挑战性和有趣。其次,它将帮助我们以更有结构的方式审视我们的工作。第三,它将为我们提供实践最先进方法之一——LLM代理的机会。

Few_shot

有的时候,我们如果给他一个示范,可能会有更好的效果。将示例加入 Prompt 的做法,就是 few-shots,few  可以是 1,2,3,4,5 。比如,我提供一个样本,就是 1-shot 。

你是一个擅长中文和英文的AI 工程师和数据科学家,擅长中文和英文相关的技术文章编写和翻译。
请将下面的英文翻译成中文,要求语言生动活泼,简洁优雅。
请参考我给出的示例:
<example>
英文原文:
As ChatGPT gets “lazy,” people test “winter break hypothesis” as the cause
中文翻译:
ChatGPT变懒原因:正在给自己放寒假!已被网友测出🧐
</example>

需要翻译的英文段落:《见上面英文段落》
请输出3个翻译后的结果:

ChatGPT 3.5 输出:

  1. 花费大量时间思考不同可能的未来情景和它们的概率可能会吸引人,但我建议一个完全不同的方法——尝试自己建立原型。首先,这是相当具有挑战性和有趣的。其次,它将帮助我们以更有结构的方式看待我们的工作。第三,它将给我们一个机会实践最前沿的方法之一——LLM代理。
  2. 对未来情景进行大量思考,以及它们的概率,可能会吸引人,但是我建议采取完全不同的方法——尝试自己建立原型。首先,这是相当具有挑战性和有趣的。其次,这将帮助我们以更有结构的方式审视我们的工作。第三,这将为我们提供一个实践最尖端方法之一的机会——LLM代理。
  3. 花费大量时间思考不同可能的未来情景及其概率可能会引人入胜,但我建议采取完全不同的方法——尝试自己构建原型。首先,这相当具有挑战性和有趣。其次,它将帮助我们以更有结构的方式审视我们的工作。第三,它将为我们提供一个实践最尖端方法之一的机会——LLM代理。

COT

效果似乎有所提升。我们再试试 COT,也就是思维链。他是将要执行的任务拆解为多个步骤,按步骤执行。

图片

我们更新后的 Prompt  是:

你是一个擅长中文和英文的AI工程师和数据科学家,擅长中文和英文相关的 AI 技术文章编写和翻译。
请将下面的英文翻译成中文,要求语言生动活泼,简洁优雅。
你需要两个步骤来执行这个任务:
1. 将英文直接翻译为中文,主要考虑意思表达的准确性
2. 将步骤 1 直译的中文翻译成更简洁优雅通顺的中文标题,主要考虑中文的语言表达习惯
需要翻译的英文文章标题:《见上面英文段落》
请步骤 1 和步骤 2 结果:

ChatGPT 3.5 输出: 

步骤1翻译结果:

花费大量时间思考不同可能的未来场景及其概率可能会令人着迷,但我建议采取完全不同的方法——尝试自己构建原型。首先,这相当具有挑战性和趣味性。其次,它将有助于我们以更有结构性的方式审视我们的工作。第三,它将为我们提供一个实践最先进方法之一——LLM代理的机会。

步骤2翻译结果:

摒弃“花费大量时间思考不同未来场景和概率”的想法,来试着亲自构建原型吧!这不仅具有挑战性和趣味性,还能使我们更有条理地审视工作。同时,这也是尝试最先进方法——LLM代理的机会。

可以看到,现在这个结果明显更好了。

COT+SC

COT 通过分步骤加大了 LLM 的深度。SC  则是在增加深度的基础上再增加宽度。

图片

我们用 COT+ SC 的方法再来写一个Prompt:

你是一个擅长中文和英文的AI工程师和数据科学家,擅长中文和英文相关的 AI 技术文章编写和翻译。
请将下面的英文翻译成中文,要求语言生动活泼,简洁优雅。
你需要3个步骤来执行这个任务:
1. 将英文直接翻译为中文,主要考虑意思表达的准确性,请给出 3个结果
2. 将步骤 1 直译的3个中文翻译成更简洁优雅通顺的中文,主要考虑中文的语言表达习惯
3. 审视步骤 2 提供的 3 个结果,整合出一个最好的结果,作为最终结果输出
需要翻译的英文段落:
《见上面英文段落》
分别输出步骤 1 的 3 个结果、步骤 2 的 3 个结果,和步骤 3 的最终结果:

ChatGPT 3.5 输出结果:

步骤 1 结果:

1. 花费大量时间思考不同可能的未来情景及其概率可能是迷人的,但我建议采取完全不同的方法——尝试亲自建立你的原型。首先,这相当具有挑战性和有趣。第二,它将帮助我们以更有结构的方式看待我们的工作。第三,它将给我们一个机会来实践最前沿的方法——LLM代理。

2. 投入大量的时间思考不同可能的未来情景及其概率可能会十分吸引人,但我建议采取完全不同的方法——尝试亲自建立你的原型。首先,这是相当具有挑战性和有趣的。第二,它将帮助我们以更有结构的方式审视我们的工作。第三,它将为我们提供一个实践最尖端方法之一——LLM代理的机会。

3. 投入大量时间思考不同可能的未来情景及其概率可能会引人入胜,但我建议采取完全不同的方法——尝试亲自建立你的原型。首先,这是相当具有挑战性和有趣的。第二,它将帮助我们以更有结构的方式审视我们的工作。第三,它将给我们一个机会来实践最前沿的方法之一——LLM代理。

步骤 2 结果:

1.虽然沉浸于思考各种可能出现的未来情景及其概率是令人着迷的,但我建议采取绝然不同的方式——亲自尝试建立你的原型。首先,这样做既具有挑战性又有趣。其次,它能够以更有结构的方式审视我们的工作。第三,它让我们有机会实践最尖端的方法之一——LLM代理。

2. 虽然沉浸于思考各种可能出现的未来情景及其概率是令人着迷的,但我建议采取绝然不同的方式——亲自尝试建立你的原型。首先,这样做既具有挑战性又有趣。其次,它能够以更有结构的方式审视我们的工作。第三,它给我们提供了实践最尖端方法之一——LLM代理的机会。

3. 虽然沉浸于思考各种可能出现的未来情景及其概率是引人入胜的,但我建议采取绝然不同的方式——亲自尝试建立你的原型。首先,这样做既具有挑战性又有趣。其次,它能够以更有结构的方式审视我们的工作。最后,它让我们有机会实践最尖端的方法之一——LLM代理。

步骤 3 结果:

1. 虽然沉浸于思考各种可能出现的未来情景及其概率是引人入胜的,但我建议采取绝然不同的方式——亲自尝试建立你的原型。首先,这样做既具有挑战性又有趣。其次,它能够以更有结构的方式审视我们的工作。最后,它让我们有机会实践最尖端的方法之一——LLM代理。

TOT

TOT 与 COT+SC  类似,也是先分步骤,然后每个步骤多个结果,不同的是,COT+SC  是并列输出多个结果。而 TOT 是在每一步的多个结果中进行选择,然后再进行下一步,输出多个结果。

我们继续修改 Prompt:

你是一个擅长中文和英文的AI工程师和数据科学家,擅长中文和英文相关的 AI 技术文章编写和翻译。
请将下面的英文翻译成中文,要求语言生动活泼,简洁优雅。
你需要3个步骤来执行这个任务:
1. 将英文直接翻译为中文,主要考虑意思表达的准确性,请给出 3个结果
2. 从步骤 1 的结果中选择一个意思表达更恰当的给出 1 个结果
3. 将步骤 2 的结果润色为更简洁优雅通顺的中文,主要考虑中文的语言表达习惯,输出 3 个结果
4. 审视步骤 3 提供的 3 个结果,整合出一个最好的结果,作为最终结果输出
需要翻译的英文段落:
《见上面英文段落》
分别输出步骤 1 的 3 个结果、步骤 2 的 1 个结果、步骤 3 的 3 个结果,和步骤 4 的最终结果:

ChatGPT 3.5 输出结果:

步骤 1 的 3 个结果:

  1. 花费大量时间思考各种可能的未来情景和它们的概率可能是令人着迷的,但我建议采取完全不同的方法——尝试亲自建立你的原型。首先,这是相当具有挑战性和有趣的。第二,它将帮助我们以更有结构的方式看待我们的工作。第三,它将给我们一个机会在实践中尝试最前沿的方法之一——LLM代理。

  2. 花费大量时间思考不同可能的未来情景及其概率可能是引人入胜的,但我建议采取完全不同的方法——尝试自己构建原型。首先,这非常具有挑战性和有趣。其次,这将帮助我们更有条理地看待我们的工作。第三,这将为我们提供一个实践的机会,尝试最尖端的方法之一——LLM代理。

  3. 花费大量时间思考各种可能的未来情景及其概率可能是吸引人的,但我建议采取完全不同的方法——尝试自己建立原型。首先,这是相当具有挑战性和有趣的。其次,这将帮助我们以更有结构的方式看待我们的工作。第三,这将为我们提供一个实践的机会,尝试最前沿的方法之一——LLM代理。

步骤 2 的 1 个结果:

花费大量时间思考各种可能的未来情景及其概率可能是吸引人的,但我建议采取完全不同的方法——尝试自己建立原型。这不仅具有挑战性和有趣,还能以更有结构的方式审视我们的工作,并实践尝试最前沿的方法之一——LLM代理。

步骤 3 的 3 个结果:

  1. 花费大量时间思考各种可能的未来情景及其概率可能很吸引人,但我建议采取一种截然不同的方法——尝试亲自建立原型。首先,这既具有挑战性又有趣。其次,它将帮助我们以更有条理的方式审视我们的工作。第三,它将给我们提供一个实践的机会,尝试最尖端的方法之一——LLM代理。

  2. 花费大量时间思考各种可能的未来情景及其概率可能很吸引人,但我建议采取完全不同的方法——尝试亲自建立原型。首先,这非常具有挑战性和有趣。其次,它将帮助我们以更有结构的方式看待我们的工作。第三,它将给我们一个实践的机会,尝试最前沿的方法之一——LLM代理。

  3. 花费大量时间思考各种可能的未来情景及其概率可能很吸引人,但我建议采取完全不同的方法——尝试亲自构建你的原型。首先,这非常具有挑战性和有趣。其次,它将帮助我们以更有结构的方式审视我们的工作。第三,它将给我们一个实践的机会,尝试最尖端的方法之一——LLM代理。

步骤 4 的最终结果:

花费大量时间思考各种可能的未来情景及其概率可能很吸引人,但我建议采取完全不同的方法——尝试亲自建立原型。这不仅具有挑战性和有趣,还能以更有结构的方式审视我们的工作,并实践尝试最前沿的方法之一——LLM代理。

Step-Back

通俗的讲,Step-Back 就是在写 Prompt 的时候,往后退一步,想想在回答这个问题之前需要先回答什么问题。网上很多 Step-Back 都是通过变成的方法把问题拆成多个 Chain  来做的。但我试了一下,用一条纯粹的 Prompt 也是可以实现的。

还是相同的任务,我们写这样一条 Prompt:

你是一个擅长中文和英文的AI工程师和数据科学家,擅长中文和英文相关的 AI 技术文章编写和翻译。
请将下面的英文翻译成中文,要求语言生动活泼,简洁优雅。
需要翻译的英文段落:​​​​​《见上面英文段落》
请按照一下步骤输出结果:
1. 要想得到通顺优雅简洁的翻译文章,你需要知道哪些前提问题
2. 这些前提问题的答案分别是什么
3. 基于这个前提问题,对于给出英文的翻译结果

ChatGPT 3.5 输出结果:

  • 要想得到通顺优雅简洁的翻译文章,你需要知道哪些前提问题?在进行翻译之前,需要了解以下前提问题:

    • 目标受众是谁?
    • 文章的语气和风格是什么?
    • 是否有特定的行业或领域术语需要考虑?
  • 这些前提问题的答案分别是什么?

    • 目标受众是中文读者,可能包括普通读者、专业领域读者或技术人员。
    • 文章的语气应该是生动活泼的,以吸引读者的注意力。
    • 文章的风格应该简洁优雅,使读者易于理解。
    • 可能需要考虑AI、工程、数据科学等领域的术语。
  • 基于这个前提问题,对于给出英文的翻译结果:
    • 花费大量时间思考不同可能的未来场景及其概率可能会引人入胜,但我建议采用完全不同的方法——尝试自己建立原型。首先,这是相当具有挑战性和有趣的。其次,这将帮助我们以更有结构的方式看待我们的工作。第三,它将为我们提供尝试最前沿方法之一——LLM智能体的实践机会。

这样翻译结果既生动活泼,又简洁优雅。

总结

下面我们对同一个输出在相同的模型 ChatGPT 3.5 Turbo 上的翻译结果:

Prompt  模式

结果

主观评分

Zero-Shot

花费大量时间思考不同可能的未来情景及其概率可能会令人着迷,但我建议尝试完全不同的方法——自己构建原型。首先,这非常具有挑战性和有趣。其次,它将帮助我们以更有结构的方式审视我们的工作。第三,它将为我们提供实践最先进方法之一——LLM代理的机会。

3.5

Few-Shots

花费大量时间思考不同可能的未来情景及其概率可能会引人入胜,但我建议采取完全不同的方法——尝试自己构建原型。首先,这相当具有挑战性和有趣。其次,它将帮助我们以更有结构的方式审视我们的工作。第三,它将为我们提供一个实践最尖端方法之一的机会——LLM代理。

3.5

COT

摒弃“花费大量时间思考不同未来场景和概率”的想法,来试着亲自构建原型吧!这不仅具有挑战性和趣味性,还能使我们更有条理地审视工作。同时,这也是尝试最先进方法——LLM代理的机会。

5

COT+SC

虽然沉浸于思考各种可能出现的未来情景及其概率是引人入胜的,但我建议采取绝然不同的方式——亲自尝试建立你的原型。首先,这样做既具有挑战性又有趣。其次,它能够以更有结构的方式审视我们的工作。最后,它让我们有机会实践最尖端的方法之一——LLM代理。

4

TOT

花费大量时间思考各种可能的未来情景及其概率可能很吸引人,但我建议采取完全不同的方法——尝试亲自建立原型。这不仅具有挑战性和有趣,还能以更有结构的方式审视我们的工作,并实践尝试最前沿的方法之一——LLM代理。

4.5

Step-Back

花费大量时间思考不同可能的未来场景及其概率可能会引人入胜,但我建议采用完全不同的方法——尝试自己建立原型。首先,这是相当具有挑战性和有趣的。其次,这将帮助我们以更有结构的方式看待我们的工作。第三,它将为我们提供尝试最前沿方法之一——LLM智能体的实践机会。

3. 75

总结来说:

  • 对于同样的模型,同样的任务,使用不同的 Prompt,输出的结果也有不小的差异
  • 一般来说,使用Prompt技巧的结果会比不使用任何技巧要好
  • 对于简单的任务并不是叠加所有的技巧就会更好,到达一定结果后。再叠加技巧不会提升效果
  • 这是一个让大家理解 Prompt 编写技巧的小教程,所以采用了同一个任务方便对比,但是有些复杂技巧适合与更难的任务,只有在更难的任务上才能看出差异

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/636262.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

递归、搜索与回溯算法(专题二:深搜)

往期文章&#xff08;希望小伙伴们在看这篇文章之前&#xff0c;看一下往期文章&#xff09; &#xff08;1&#xff09;递归、搜索与回溯算法&#xff08;专题零&#xff1a;解释回溯算法中涉及到的名词&#xff09;【回溯算法入门必看】-CSDN博客 &#xff08;2&#xff09…

实验七 RMAN恢复管理器

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的很重要&…

利用appium自动控制移动设备并提取数据

安装appium-python-client模块并启动已安装好的环境 安装appium-python-client模块 在window的虚拟环境下执行pip install appium-python-client 启动夜神模拟器&#xff0c;进入夜神模拟器所在的安装路径的bin目录下&#xff0c;进入cmd终端&#xff0c;使用adb命令建立adb…

Kubernetes (十五) 认证与授权

一. 访问控制 二.UserAccount与serviceaccount区别 将认证信息添加…

关闭Windows自动更新的6种方法

关闭Windows自动更新的6种方法&#xff01; 方法一&#xff1a;通过Windows设置关闭Windows自动更新 步骤1. 按WinI打开Windows设置页面。步骤2. 单击“更新和安全”>“Windows更新”&#xff0c;然后在右侧详情页中选择“暂停更新7天”选项即可在此后7天内关闭Windows更新…

【Linux】相关背景及环境搭建

前言&#xff1a; 认识 Linux, 了解 Linux 的相关背景&#xff0c;学会如何使用云服务器&#xff0c;掌握使用远程终端工具 xshell 登陆 Linux 服务器 文章目录 一、Linux介绍1.1 关于UNIX1.2 Linux的诞生及发展历程1.3 Linux开源1.4 Linux在各个行业的现状1.5 发行版本 二、Li…

LeetCode 热题 100 | 双指针(上)

目录 1 283. 移动零 2 11. 盛最多水的容器 3 15. 三数之和 菜鸟做题第一周&#xff0c;语言是 C 1 283. 移动零 解题思路&#xff1a; 两个指针一前一后遍历数组前者永远指向 0&#xff0c;后者永远在寻找非 0 数的路上后者找到一个非 0 数就和前者进行一个数值交换 …

x-cmd pkg | jieba - 中文结巴分词工具

目录 简介首次用户功能特点竞品分析进一步阅读 简介 结巴中文分词&#xff08;jieba&#xff09;是一款在 Python 环境下使用的开源中文文本分词工具。它支持多种分词模式&#xff0c;包括精确模式、全模式和搜索引擎模式&#xff0c;同时支持繁体分词和自定义词典。因其易用性…

[202401C]巨人之力的题解

原题描述&#xff1a; 时间限制: 1000ms 空间限制: 262144kb 题目描述 两千多年以前&#xff0c;身为艾尔迪亚人的尤弥尔意外获得巨人之力&#xff0c;并且创造了九大巨人&#xff0c;其无以匹敌的力量使得整个世界都陷入了无尽的战乱纷争&#xff0c;艾尔迪亚之外的人类过…

docker-compose直接官网二进制文件安装(linux)

试了很多种方法&#xff0c;国内镜像库安装&#xff0c;会报语法错误 直接用github官网&#xff0c;命令安装下载太慢&#xff0c;还不如魔法下载 官网链接docker-compose-linux-x86_64https://github.com/docker/compose/releases/download/v2.24.1/docker-compose-linux-x8…

温度采样【通道选通】S9KEAZ128的PTA2和PTA3引脚无法拉高

1、问题记录&#xff1a;由18串温度采样修改成32串温度采样&#xff0c;增加一路adc采样&#xff0c;通过cd4051控制通道选通&#xff0c;代码中增加了相应的代码&#xff0c;发现增加的最后8路温度不能够控制&#xff0c;以24串为例&#xff0c;给温度传感器增加温度&#xff…

pytorch(四)、完整小网络的搭建和sequential的使用

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言搭建小网络和sequential的使用一、 第一种形式如下&#xff1a;二、第二种方式&#xff0c;使用sequential 前言 至此&#xff0c;神经网络的基础部分就基本结…

解决Spring Boot跨域问题(配置JAVA类)

什么是跨域问题 跨域问题指的是不同端口之间&#xff0c;使用 ajax 无法相互调用的问题。跨域问题本质是浏览器的一种保护机制&#xff0c;它是为了保证用户的安全&#xff0c;防止恶意网站窃取数据。 比如前端用的端口号为8081&#xff0c;后端用的端口号为8080&#xff0c;后…

C语言从入门到实战——编译和链接

编译和链接 前言一、 翻译环境和运行环境二、 翻译环境2.1 预处理&#xff08;预编译&#xff09;2.2 编译2.2.1 词法分析2.2.2 语法分析2.2.3 语义分析 2.3 汇编2.4 链接 三、 运行环境 前言 在C语言中&#xff0c;编译和链接是将源代码转换为可执行文件的两个主要步骤。 编…

MacBookPro怎么数据恢复? mac电脑数据恢复?

使用电脑的用户都知道&#xff0c;被删除的文件一般都会经过回收站&#xff0c;想要恢复它直接点击“还原”就可以恢复到原始位置。mac电脑同理也是这样&#xff0c;但是“回收站”在mac电脑显示为“废纸篓”。 如果电脑回收站&#xff0c;或者是废纸篓里面的数据被清空了&…

App 测试工具大全,收藏这篇就够了

随着移动互联网的高速发展&#xff0c;App应用非常火&#xff0c;测试工程师也会接触到各种app应用。除了人工测试之外&#xff0c;也可以通过一些测试工具来提高我们的测试效率&#xff0c;以下对于我用过或听过的app测试工具做了一个统一整理&#xff0c;欢迎补充。 一、APP自…

【51单片机Keil+Proteus8.9+ADC0804】ADC实验 模拟转数字实验

一、实验名称 ADC实验 模拟转数字实验 二、设计思路 电路设计 1.选用AT89C51单片机作为电路核心单元&#xff0c;外接8位单通道AD转换器ADC0804芯片和LM016L显示器以及滑动变阻器等其它常用元器件构成电路。 2.将ADC0804芯片的控制引脚RD,WR,INTR接到AT89C51芯片对应引脚&…

Spring Boot程序的打包与运行:构建高效部署流程

引言 在现代应用开发中&#xff0c;高效的打包和部署流程对于项目的开发、测试和上线至关重要。Spring Boot作为一种快速开发框架&#xff0c;提供了方便的打包工具和内嵌式的Web服务器&#xff0c;使得打包和运行变得更加简单。本文将研究在Spring Boot应用中如何进行打包&am…

外包干了5个月,技术退步明显...

先说一下自己的情况&#xff0c;大专生&#xff0c;18年通过校招进入武汉某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能测…

【数据库】聊聊InnoDB存储引擎结构

在学习任何技术、框架、中间件的时候&#xff0c;我们都需要从一个宏观的角度先去了解一下大概视角&#xff0c;然后在通过剖定解牛的方式进行细分点的学习&#xff0c;同样对于任何存储结构来说&#xff0c;基本上都包含几块内容。 通信&#xff1a;解决信息传输问题、存储模型…