【C语言】编译和链接深度剖析

请添加图片描述

文章目录

  • 📝前言
  • 🌠 翻译环境和运行环境
    • 🌉翻译环境
  • 🌠预处理(预编译)
    • 🌉编译
  • 🌠词法分析
    • 🌠语法分析
  • 🌉语义分析
    • 🌠汇编
  • 🌉 链接
    • 🌉 运行环境
  • 🚩总结


📝前言

本小节,我们学习翻译环境和运行环境,其中我们将学习编译环境的4个阶段:预编译,编译(词法分析,语法分析,语义分析),汇编,链接,文章干货满满!学习起来吧😃!

🌠 翻译环境和运行环境

ANSI C的任何⼀种实现中,存在两个不同的环境。
第1种是翻译环境,在这个环境中源代码被转换为可执⾏的机器指令(二进制指令)。
第2种是执⾏环境,它⽤于实际执⾏代码。
在这里插入图片描述

🌉翻译环境

翻译环境是怎么讲源代码转换为可执行的机器指令的呢?我们深入解析翻译环境是怎么一步一步的实现翻译的。

翻译环境是由编译和链接两个大过程组成的,而编译又可以分解成:预处理(有些书也叫预编译),编译,汇编三个过程。
在这里插入图片描述
一个C语言项目可能有多个.c文件一起构建,那么多个.c文件如何生成可执行程序呢?
多个.c文件单独经过编译出编译处理生产对应的目标文件。
注:在Windows环境下的目标文件的后缀是.obj,Linux环境下目标文件的后缀是.o
多个目标文件和链接库一起经过链接器处理生成最终的可执行程序
链接库是指运行时库(它是支持程序运行的基本函数集合)或者第三方库。

如果再把编译器展开成3个过程,那就变成了下面的过程:
在这里插入图片描述
在这里插入图片描述

注:VS2022 是集成开发环境虽固然好用,是个超级集成的这样一个工具,但他把很多细节都隐藏掉了,不利于让我们观察这里面的细节。
Linux 环境下C语言编译器:gcc,本文将使用gcc作为演示的工具进行每一个环节的解析。工具使用VScode远程连接Linux,具体文章怎么连接,后期我们再继续学习Linux起来,我们主要先学习编译和链接里面的具体细节怎么实现的。

🌠预处理(预编译)

在预处理阶段,源文件和头文件会被处理成为.i为后缀的文件。
gcc环境下想观察一下,对test.c文件预处理 后的.i文件,命令如下:

gcc -E test.c -o test.i
-E: 只执行预处理阶段,不进行后续编译和汇编阶段。
test.c: 指定需要预处理的源代码文件。
-o test.i:
-o: 指定输出文件。
test.i: 指定预处理后的输出文件为test.i。

功能:
将源代码文件test.c进行预处理,仅执行预处理阶段,不进行后续编译和汇编。
在这里插入图片描述
在这里插入图片描述

预处理阶段主要处理那些源文件中#开始的预编译指令。比如:#include#define,处理规则如下:

  • 将所有的#define删除,并展开所有宏定义。
  • 处理所有的条件编译指令,如:#if#ifdef#elif#else#endif
  • 处理#include 预编译指令,将包含的头文件的内容插入预编译指令的位置。这个过程是递归进行的,也就是被包含的头文件也可能包含其他文件。
  • 删除所有注释
  • 添加行号和文件名标识,方便后续编译器生成调试信息等。
  • 或保留所有的#pragma的编译器指令,编译器后续会使用。
    经过预处理后的.i文件中不再包含宏定义,因为宏已经被展开。并且包含的的头文件都被插入到.i文件中。所以当我们无法知道宏定义或者头文件是否包含正确的时候,可以查看预处理后的.i文件来确认。

总结:预处理阶段目的是过滤源代码,生成清洁输入以供后续编译使用。可以实现条件编译、代码重用、错误检查等功能。

🌉编译

编译过程就是讲预处理后文件进行一系列的:词法分析、语法分析、语义分析及优化,生成相应的汇编代码文件。

gcc -S test.i -o test.s

对代码进行编译的时候,会怎么做呢?假设有下面的代码

array[index] = (index+4)*(2+6);

在这里插入图片描述

🌠词法分析

将源代码程序被输入扫描器,扫描器的任务就是进行词法分析,讲代码中的字符分割成一系列的记号(关键字、标识符、字面量、特殊字符等)。
上面程序进行词法分析后得到了16个记号:
在这里插入图片描述

🌠语法分析

语法分析器,将对扫描的记号进行语法分析,从而产生语法树。这些语法树是以表达式为节点的树。

补充:

  • 语法分析器的输入是词法分析产生的记号流(tokenstream)。语法分析器通过遍历记号流,使用预测分析或递归下降等算法,根据上下文环境判断记号是否匹配产生式。一旦匹配成功,就在内存中构建对应的语法树节点。节点类型取决于匹配的产生式左侧符号。语法树以表达式、语句等语法单位为节点,它们之间构成父子关系,就形成了一棵树状结构。表达式通常是语法树中的重要节点类型之一。比如一个赋值语句的语法树,其左子树就可能是一个表达式节点。语法分析成功与否,取决于是否能完全匹配输入记号流。一旦匹配失败,就报告语法错误。

  • 语法分析的结果是一棵可以表示源代码结构的抽象语法树(AST)。

在这里插入图片描述

🌉语义分析

由语义分析器来完成语义分析,即对表达式的语法层面分析。编译器所能做的分析是语义的静态分析。静态分析通常包括声明和类型的匹配,类型的匹配,类型的转换等。这个阶段会报告错误的语法信息。

语法表达式:

array[index] = (index+4)*(2+6)

在语义分析阶段会进行的检查:

  1. 类型检查:
  2. 检查index是否声明为整数类型
  3. 检查array下标是否为整数类型
  4. 检查各项运算结果是否为整数类型
  5. 声明检查:
    检查arrayindex是否已声明
  6. 范围检查:
    检查index是否在array下标范围内
  7. 赋值检查:
    检查右值表达式类型是否匹配左值array[index]类型

如果发现以下错误,会报告:
1.index类型错误
2.array下标类型错误
3.运算结果类型错误
4.index未声明
5.array未声明
6.index越界
7.赋值类型不匹配

在这里插入图片描述
总结:在编译阶段中,讲预处理的C语言代码进行词法分析,语法分析,语义分析来发现错误,并对代码进行优化,然后讲代码转换成高效的汇编指令代码。

🌠汇编

汇编器是将汇编代码转变成机器可执行的指令,每一个可执行的指令,每一个汇编语句几乎都对应一条机器指令。就是根据汇编指令和机器指令的对照表一 一的进行翻译,也不做指令优化。汇编的命令如下:

gcc -c test.s -o test.o
-c 参数表示只进行编译不进行链接,生成目标文件而不是可执行文件。
-o test.o 指定输出文件名为test.o。

这个命令主要做以下工作:

  1. 语法检查test.s文件,检查汇编语法是否正确。
  2. 处理test.s中定义的符号,如标签、变量等。
  3. 根据test.s中的汇编指令,生成对应目标机器指令。
  4. 生成目标文件test.o,包含机器码和链接信息。
  5. test.o文件符合目标机器的对象文件格式规范。

所以这个gcc命令就是利用gcc作为汇编器,将汇编源代码test.s翻译成目标对象文件test.o的过程。它完成了汇编阶段的主要工作—从汇编语言到机器代码的转换。
在这里插入图片描述
总结:汇编就是把汇编的代码翻译成二进制的指令,生成.o文件(目标文件)

🌉 链接

链接是一个复杂的过程,链接的时候需要把一堆文件链接在一起才生成可执行程序。
链接的命令如下:

gcc test .o -o test

链接过程主要包括:地址和空间分配,符号决议和重定位等这些步骤。链接解决的是一个项目中的多文件,多模块之间互相调用的问题

C语言中的链接实现符号决议和重定位的主要步骤如下:

  1. 汇编阶段生成对象文件(.o文件)
    编译单个源文件后生成对应的对象文件。对象文件包含代码段、数据段以及符号表等信息。
  2. 链接阶段读取对象文件
    链接器读取所有对象文件,并构建一个全局符号表。
  3. 符号决议
    链接器检查全局符号表中是否存在重复定义或未定义的外部符号。如果有,报错;如果没有,继续下一步。
  4. 重定位
    对每个对象文件:
  • 扫描重定位表,获取需要重定位的位置。
  • 查找位置对应的符号在全局符号表中的地址。
  • 更新位置的值为符号地址。
  1. 构建输出文件
    链接器根据对象文件中的代码和数据段,生成一个符合目标格式的可执行文件。
    其中:
  • 代码段由各对象文件代码段连接而成。
  • 数据段由静态存储区连接而成。
  • 符号表包含链接后符号的最终地址信息。
    总结: 在C语言链接过程中,通过构建全局符号表实现符号决议,通过读取和修改重定位表实现符号地址的计算和重定位,从而生成可以直接执行的目标文件。这是C语言链接实现重定位的关键。

比如:
在一个项目中有2个.c文件(test.cadd.c),代码如下:
test.c:

# define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
//声明外部符号
extern int Add(int x, int y);
//声明外部的全局变量
extern int g_val;
int main()
{int a = 100;int b = 200;int ret = Add(a, b);printf("ret=%d\n", ret);printf("g_val=%d\n", g_val);return 0;
}

add.c:

# define _CRT_SECURE_NO_WARNINGS 1int g_val = 2023;int Add(int x, int y)
{return x + y;
}

C语言链接实现符号决议和重定位的过程是:

  1. 汇编阶段,分别编译test.cadd.c,生成test.oadd.o两个对象文件。
  2. 链接阶段,链接器读取test.oadd.o,构建全局符号表。
  3. 符号决议,检查全局符号表:
  • Add函数和g_val变量在两个对象文件中都有定义,没有重复定义错误。
  • main函数调用的Add和引用的g_valtest.o中没有定义,标记为未定义外部符号。
  1. 重定位:
  • test.o重定位表中记录Addg_val符号,链接器查找全局符号表,得到它们在add.o中的定义地址。
  • 更新test.oAddg_val符号引用位置的值为它们在add.o中的地址。

以下是Add重定位的大致流程:

我们在test.c的文件中使用了add.c文件中的Add函数和g_val变量。
我们在test.c的文件中每一次使用Add函数和g_val的时候必须确切知道Addg_val的地址,但是由于每个文件是单独编译的,在编译器编译test.c的时候并不知道Add函数和g_val变量的地址,所以暂时把调用Add的指令的目标地址和g_val的地址搁置。等待最后的链接的时候根据引用的符号Add在其他模块中查找Add函数的地址,然后讲test.c中所有引用到Add的指令重新修正,让他们的目标为真正的Add函数的地址,对于全局变量g_val也是类似的方法来修正地址。这个地址修正的过程也被叫做:重定位
图解:
在这里插入图片描述

假设在汇编中Add.c文件Add函数变量的地址为0x100test.c文件的extern Add(int x,int y)地址为0x000main()函数地址为0x200,经过编译时test.c找到Add.c的有效地址0x100,然后test.c中的Add的地址不是真的地址,它就会被判定为无效地址,然后两个有效地址合并,最后留下Add0x100和main0x200,形成新的符号组


如果我们讲Add.c文件中的Add函数去掉,再次将代码运行时,会发出警告:
在这里插入图片描述

  1. 构建输出文件,代码段链接test.oadd.o代码段,数据段链接add.o中的g_val变量,符号表记录链接后各符号的最终地址。

总结:通过构建全局符号表完成符号决议,读取并修改test.o重定位表记录实现了符号地址的计算和重定位,生成可以执行的目标文件。

总的记忆图
在这里插入图片描述

🌉 运行环境

  1. 程序必须载入内存中。在有操作系统的环境中:一般这个由操作系统完成。在独立的环境中,程序的载入必须由手工安排,也是通过可执行代码置入只读内存来完成。
  2. 程序的执行便开始。接着便调用main函数。
  3. 开始执行程序代码。这个时候程序讲使用一个运行时堆栈(stack),存储函数的局部变量和返回地址。程序同时也可以使用静态(static)内存,存储与静态内存中的变量在程序的整个执行过程一直保留他们的值。
  4. 终止程序。正常终止main函数;也有可能意外终止。

🚩总结

这次阿森和你一起学习了 C语言程序从源代码到可执行文件的整个翻译过程。

翻译环境指将源代码翻译成可执行程序的整个过程,运行环境指程序实际执行的环境。
预处理(预编译)–>对源代码进行预处理,如宏替换、头文件包含等。
编译 -->将预处理后的源代码进行词法、语法和语义分析,生成目标代码。
词法分析:识别源代码中的标识符、关键字、运算符等词法单元。
语法分析: 检查源代码是否符合语法规则,构建抽象语法树。
语义分析:检查源代码是否符合语义规则,如类型检查等。
汇编:将目标代码转换成机器指令。
链接:链接目标文件生成可执行文件。
运行环境:提供程序实际执行所需的硬件资源,如内存、CPU等。

阿森将下一节和你一起学习预处理详解 。感谢你的收看,如果文章有错误,可以指出,我不胜感激,让我们一起学习交流,如果文章可以给你一个小小帮助,可以给博主点一个小小的赞😘

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/635721.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【教程】集群搭建准备工作全流程

基于VMware创建虚拟机进行集群搭建&#xff0c;适用于hadoop/GreenPlum等集群 之前已经创建了三台虚拟机hadoop102&#xff0c;hadoop103&#xff0c;hadoop104来搭建hadoop集群&#xff0c;因为目前学习到了greemplum&#xff0c;因此新建三台虚拟机hadoop105&#xff0c;had…

springboot110作业管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的作业管理系统 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资…

vue.js安装

1:下载 Node.js 官网&#xff1a;https://nodejs.org/en/download 2:安装 node -v npm -v 3:配置 npm config set prefix "F:\node\node_global" npm config set cache "F:\node\node_cache" 按 win 键并输入“编辑系统环境变量”调出系统属性界面&a…

AWTK 开源串口屏开发(7) - 屏幕保护

现代屏幕其实并不需要屏幕保护&#xff0c;不过屏幕保护程序会衍生一些其它用途。比如&#xff1a; 保护隐私。长时间不操作&#xff0c;通过动画或者其它方式隐藏屏幕内容。数据安全。长时间不操作&#xff0c;需要输入密码才能恢复。美观/广告。长时间不操作&#xff0c;显示…

C++中的static(静态)

2014年1月19日 内容整理自The Cherno:C系列 2014年1月20日 内容整理自《程序设计教程&#xff1a;用C语言编程 第三版》 陈家骏 郑滔 -----------------------------------------------------------------------------------------------------------------------------…

JS执行顺序

众所周知&#xff0c;JavaScript 是单线程语言,只能同时执行做一件事(js只有一个线程&#xff0c;称之为main thread-主线程) 1.Javascript 运行机制 main thread 主线程和 call-stack 调用栈(执行栈)&#xff0c;所有的任务都会被放到调用栈等待主线程执行。 2.Javascript 任…

SpringBoot+beetl idea热更新解决方案

SpringBootbeetl idea热更新解决方案 第一在application中开启&#xff1a; beetl:resource-auto-check: true #热加载beetl模板&#xff0c;开发时候用第二在application中开启&#xff1a; devtools: 这个部分专门用于配置Spring Boot DevTools的相关参数。DevTools…

十八周周报

文章目录 摘要文献阅读3D reconstruction of human bodies from single-view and multi-view images: A systematic review简介研究方法搜索策略选择标准搜索结果 三维重建方法单个视图中使用的技术基于参数化人体模型的回归基于非参数人体模型的回归 多个视图中使用的技术基于…

PaddleNLP评论观点抽取和属性级情感分析

项目地址&#xff1a;PaddleNLP评论观点抽取和属性级情感分析 - 飞桨AI Studio星河社区 (baidu.com) 情感分析旨在对带有情感色彩的主观性文本进行分析、处理、归纳和推理&#xff0c;其广泛应用于消费决策、舆情分析、个性化推荐等领域&#xff0c;具有很高的商业价值。 依托…

C#,因数分解(质因子分解)Pollard‘s Rho算法的源代码

因数分解&#xff08;也称为质因子分解&#xff09;&#xff1a;将一个大整数分解它的质因子之乘积的算法。 Pollard Rho算法的基本思路&#xff1a;先判断当前数是否是素数&#xff08;质数&#xff09;&#xff0c;如果是&#xff0c;则直接返回。如果不是&#xff0c;继续找…

11、Kafka ------ Kafka 核心API 及 生产者API 讲解

目录 Kafka核心API 及 生产者API讲解★ Kafka的核心APIKafka包含如下5类核心API&#xff1a; ★ 生产者APIKafka 的API 文档 ★ 使用生产者API发送消息 Kafka核心API 及 生产者API讲解 官方文档 ★ Kafka的核心API Kafka包含如下5类核心API&#xff1a; Producer API&#x…

spring data mongo 在事务中,无法自动创建collection

spring data mongo 在事务中,无法自动创建collection org.springframework.dao.DataIntegrityViolationException: Write operation error on server xxx:30001. Write error: WriteError{code=263, message=Cannot create namespace xxx.xxxin multi-document transaction.…

Redis(四)

1、Redis的单/多线程 1.1、单线程 其实直接说Redis什么单线程或者是多线程&#xff0c;不太准确&#xff0c;在redis的4.0版主之前是单线程&#xff0c;然后在之后的版本中redis的渐渐改为多线程。 Redis是单线程主要是指Redis的网络IO和键值对读写是由一个线程来完成的&#…

小白水平理解面试经典题目LeetCode 125 Valid Palindrome(验证回文串)

125 验证回文串 说到公司面试&#xff0c;那就是得考出高度&#xff0c;考出水平&#xff0c;什么兼顾这两者呢&#xff0c;那就得看这道 原题描述&#xff1a; 给定一个字符串&#xff0c;判断它是否是回文串。回文串是指正读和反读都一样的字符串。 输入: “A man, a pla…

超级弱口令检查工具

工具介绍 超级弱口令检查工具是一款Windows平台的弱口令审计工具&#xff0c;支持批量多线程检查&#xff0c;可快速发现弱密码、弱口令账号&#xff0c;密码支持和用户名结合进行检查&#xff0c;大大提高成功率&#xff0c;支持自定义服务端口和字典。 工具采用C#开发&#…

1.19(232.用栈实现队列)

1.19(232.用栈实现队列) 在push数据的时候&#xff0c;只要数据放进输入栈就好&#xff0c;但在pop的时候&#xff0c;操作就复杂一些&#xff0c;输出栈如果为空&#xff0c;就把进栈数据全部导入进来&#xff08;注意是全部导入&#xff09;&#xff0c;再从出栈弹出数据&a…

unity-声音与声效OLD

声音与声效 基本概念audio clipaudio listeneraudio source 基本操作如何创建音频源&#xff08;背景音乐&#xff09;如何在测试的时候关闭声音 常用代码一般流程如何在一个物体上播放多个音效如何在代码中延时播放多个声音如何在代码中停止音频的播放如何判断当前是否在播放音…

福昕软件的使用

快捷操作 快捷键 快捷键功能备注Ctrl P打印 Ctrl W关闭 Ctrl B书签 鼠标放菜单栏&#xff0c;单击右键即可导入/导出 自定义菜单栏文件-->偏好设置-->文档 1、多实例&#xff1a;单击PDF后均重新打开一个新界面。

MySQL中SELECT字句的顺序以及具体使用

目录 1.SELECT字句及其顺序 2.使用方法举例 3.HAVING和WHERE 1.SELECT字句及其顺序 *下表来自于图灵程序设计丛书&#xff0c;数据库系列——《SQL必知必会》 2.使用方法举例 *题目来源于牛客网 题目描述 现在运营想要查看不同大学的用户平均发帖情况&#xff0c;并期望结…

[AI]文心一言出圈的同时,国外的ChatGPT-4.5最新资讯

前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff1a;https://www.captainbed.cn/z ChatGPT体验地址 文章目录 前言4.5key价格泄漏ChatGPT4.0使用地址ChatGPT正确打开方式最新功能语音助手存档…