yolov8机器视觉-工业质检

使用训练好的模型进行预测

yolo predict task=detect model=训练好的模型路径 source=测试图片文件夹路径 show=True

效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

切换模型进行训练(yolov8s)

修改main.py训练参数文件

使用云gpu进行训练,很方便:点击链接转至在线云gpu

在这里插入图片描述
修改训练参数:
在这里插入图片描述
此文件位于:yolov8-main->ultralytics->datasets->keypoint.yaml

修改训练素材路径位置

在这里插入图片描述

安装依赖

在这里插入图片描述

修改default.yaml

在这里插入图片描述

开启训练

在这里插入图片描述

from  n    params  module                                       arguments                     0                  -1  1       928  ultralytics.nn.modules.conv.Conv             [3, 32, 3, 2]                 1                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                2                  -1  1     29056  ultralytics.nn.modules.block.C2f             [64, 64, 1, True]             3                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               4                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           5                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              6                  -1  2    788480  ultralytics.nn.modules.block.C2f             [256, 256, 2, True]           7                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]              8                  -1  1   1838080  ultralytics.nn.modules.block.C2f             [512, 512, 1, True]           9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           12                  -1  1    455008  ultralytics.nn.modules.block.VoVGSCSPC       [768, 256]                    13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           15                  -1  1    114864  ultralytics.nn.modules.block.VoVGSCSPC       [384, 128]                    16                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           18                  -1  1    356704  ultralytics.nn.modules.block.VoVGSCSPC       [384, 256]                    19                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           21                  -1  1   1417920  ultralytics.nn.modules.block.VoVGSCSPC       [768, 512]                    22        [15, 18, 21]  1   2118757  ultralytics.nn.modules.head.Detect           [7, [128, 256, 512]]          
YOLOv8s summary: 301 layers, 10281013 parameters, 10280997 gradientsNew https://pypi.org/project/ultralytics/8.0.168 available 😃 Update with 'pip install -U ultralytics'
Ultralytics YOLOv8.0.118 🚀 Python-3.10.12 torch-2.0.1+cu118 CUDA:0 (NVIDIA GeForce RTX 3060, 12044MiB)
yolo/engine/trainer: task=detect, mode=train, model=/home/featurize/work/yolo/yolov8-main/yolov8s.pt, data=/home/featurize/work/yolo/yolov8-main/ultralytics/datasets/keypoint.yaml, epochs=100, patience=50, batch=4, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=6, project=None, name=None, exist_ok=False, pretrained=False, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=True, fraction=1.0, profile=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs/detect/train8
Downloading https://ultralytics.com/assets/Arial.Unicode.ttf to /home/featurize/.config/Ultralytics/Arial.Unicode.ttf...
100%|███████████████████████████████████████| 22.2M/22.2M [00:00<00:00, 279MB/s]
Overriding model.yaml nc=80 with nc=7from  n    params  module                                       arguments                     0                  -1  1       928  ultralytics.nn.modules.conv.Conv             [3, 32, 3, 2]                 1                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                2                  -1  1     29056  ultralytics.nn.modules.block.C2f             [64, 64, 1, True]             3                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               4                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           5                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              6                  -1  2    788480  ultralytics.nn.modules.block.C2f             [256, 256, 2, True]           7                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]              8                  -1  1   1838080  ultralytics.nn.modules.block.C2f             [512, 512, 1, True]           9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           12                  -1  1    591360  ultralytics.nn.modules.block.C2f             [768, 256, 1]                 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           15                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 16                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           18                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 19                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           21                  -1  1   1969152  ultralytics.nn.modules.block.C2f             [768, 512, 1]                 22        [15, 18, 21]  1   2118757  ultralytics.nn.modules.head.Detect           [7, [128, 256, 512]]          
Model summary: 225 layers, 11138309 parameters, 11138293 gradientsTransferred 349/355 items from pretrained weights
TensorBoard: Start with 'tensorboard --logdir runs/detect/train8', view at http://localhost:6006/
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
train: Scanning /home/featurize/work/yolo/yolov8-main/datasets/injector_datasets
train: New cache created: /home/featurize/work/yolo/yolov8-main/datasets/injector_datasets/labels/trainImages.cache
val: Scanning /home/featurize/work/yolo/yolov8-main/datasets/injector_datasets/l
val: New cache created: /home/featurize/work/yolo/yolov8-main/datasets/injector_datasets/labels/valImages.cache
Plotting labels to runs/detect/train8/labels.jpg... 
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tightself._figure.tight_layout(*args, **kwargs)
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.plt.savefig(fname, dpi=200)
optimizer: AdamW(lr=0.000909, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 4 dataloader workers
Logging results to runs/detect/train8
Starting training for 100 epochs...Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/100      1.49G      7.714      9.472      1.749         97        640:  Downloading https://ultralytics.com/assets/Arial.ttf to /home/featurize/.config/Ultralytics/Arial.ttf...1/100      1.49G      7.788       9.67      1.762         80        640:  Downloading https://ultralytics.com/assets/Arial.ttf to /home/featurize/.config/Ultralytics/Arial.ttf...1/100      1.49G      7.561      9.627      1.769         39        640:  Downloading https://ultralytics.com/assets/Arial.ttf to /home/featurize/.config/Ultralytics/Arial.ttf...1/100      1.49G      7.513      9.496      1.781         47        640:  
100%|█████████████████████████████████████████| 755k/755k [00:00<00:00, 195MB/s]0%|                                                | 0.00/755k [00:00<?, ?B/s]0%|                                                | 0.00/755k [00:00<?, ?B/s]10%|███▊                                    | 72.0k/755k [00:00<00:01, 673kB/s]6%|██▌                                     | 48.0k/755k [00:00<00:01, 480kB/s]22%|█████████                                | 168k/755k [00:00<00:00, 834kB/s]100%|████████████████████████████████████████| 755k/755k [00:00<00:00, 2.53MB/s]
100%|████████████████████████████████████████| 755k/755k [00:00<00:00, 2.63MB/s]1/100      1.52G      7.088      8.711      1.734         75        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.26      0.336      0.312     0.0911Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/100      1.59G      2.256      2.264       1.08         56        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.587      0.616       0.72      0.406Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/100      1.59G       1.74      1.608      1.029         36        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.832      0.757      0.817      0.496Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/100      1.58G      1.578      1.259      1.006         70        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.728      0.762      0.857      0.542Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/100      1.56G      1.534      1.063      1.002         79        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.889      0.827      0.883      0.574Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/100      1.52G      1.439     0.9197     0.9803         64        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.978       0.85      0.893      0.617Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/100      1.57G      1.346     0.7932     0.9889         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.841      0.911      0.907      0.609Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/100      1.53G      1.304     0.7377     0.9628         27        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.847      0.929      0.953      0.669Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/100      1.53G      1.214     0.6728       0.95         56        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.936      0.968      0.988      0.711Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/100      1.51G      1.187      0.636      0.938         53        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.951      0.983      0.983      0.699Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size11/100      1.51G      1.218     0.6118     0.9495         41        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.974      0.974      0.989      0.688Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size12/100      1.51G      1.285     0.6297     0.9604         40        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.944      0.911      0.987      0.697Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size13/100      1.51G      1.239     0.6125     0.9448         46        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.973      0.987      0.987      0.701Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size14/100      1.51G      1.173     0.5838     0.9342         48        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.972      0.981      0.992      0.721Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size15/100      1.51G      1.095      0.554      0.917         82        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993          1      0.995      0.744Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size16/100      1.51G       1.11     0.5582     0.9378         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.995      0.995      0.722Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size17/100      1.53G      1.129     0.5628      0.929         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.988      0.992      0.995      0.708Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size18/100      1.53G      1.111      0.542     0.9084         53        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.988      0.989      0.993      0.733Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size19/100      1.51G      1.074     0.5287     0.9198         89        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.981      0.991      0.757Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size20/100      1.51G      1.051     0.5111     0.9007         49        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.988      0.985      0.992      0.726Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size21/100      1.53G      1.048     0.5056      0.905         58        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.985       0.99      0.994      0.741Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size22/100      1.53G      1.027     0.5085     0.9059         79        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.991      0.995      0.774Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size23/100      1.57G      1.026     0.4933     0.9085         67        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.989      0.991      0.995      0.746Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size24/100      1.55G     0.9934     0.4795     0.9004         56        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.991      0.995      0.775Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size25/100      1.53G     0.9916     0.4686     0.8907         50        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.988      0.994      0.763Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size26/100      1.51G     0.9791     0.4671     0.8914         40        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.989      0.991      0.995      0.764Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size27/100      1.53G     0.9848     0.4532      0.885        107        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.989      0.994      0.761Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size28/100      1.53G     0.9716     0.4541      0.905         34        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.989      0.994      0.778Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size29/100      1.53G     0.9671      0.455     0.8927         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992       0.99      0.994      0.765Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size30/100      1.53G     0.9647      0.449     0.8885         43        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.989      0.988      0.994      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size31/100      1.53G      0.935     0.4334     0.8953         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991       0.99      0.994      0.755Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size32/100      1.53G     0.9801     0.4383     0.8881         89        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.999      0.995      0.786Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size33/100      1.53G     0.9725     0.4386     0.8858         40        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.999      0.995      0.747Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size34/100      1.51G     0.9803      0.444     0.8938         65        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995          1      0.995      0.743Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size35/100      1.51G     0.9246     0.4233     0.8812         48        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.995      0.995      0.771Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size36/100      1.51G     0.9377     0.4236      0.884        105        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.991      0.995      0.768Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size37/100      1.51G     0.9631      0.428     0.8964         56        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.991      0.995      0.749Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size38/100      1.51G     0.9436     0.4259     0.8921         37        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.991      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size39/100      1.57G     0.9083     0.4119     0.8846         85        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.992      0.995      0.764Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size40/100      1.53G     0.9459     0.4209     0.8814         43        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995       0.99      0.994      0.768Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size41/100      1.53G     0.9183     0.4124     0.8725         57        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.992      0.995      0.774Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size42/100      1.51G     0.8959     0.4084     0.8798         71        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.991      0.995      0.787Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size43/100      1.51G     0.8924     0.4123     0.8796         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.991      0.995      0.778Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size44/100      1.51G     0.9295     0.4177     0.8847         84        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.991      0.995      0.796Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size45/100      1.51G     0.9271     0.4138     0.8807         44        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.992      0.994      0.747Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size46/100      1.51G     0.8881     0.4022     0.8704         52        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.991      0.995      0.781Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size47/100      1.51G     0.8914     0.4048     0.8768         36        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.985      0.999      0.995      0.786Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size48/100      1.51G     0.9257     0.4075     0.8832         39        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991          1      0.995      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size49/100      1.51G     0.9245     0.4068     0.8723         42        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994          1      0.995      0.805Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size50/100      1.51G     0.8915     0.3981     0.8768         76        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.999      0.995      0.771Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size51/100      1.51G     0.8769     0.3943     0.8804         51        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.991      0.995      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size52/100      1.51G     0.8647     0.3863     0.8672         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.991      0.995      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size53/100      1.51G      0.878     0.3854     0.8713         22        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.991      0.995      0.782Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size54/100      1.51G     0.8804     0.3957     0.8731         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.998      0.995      0.784Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size55/100      1.51G     0.8723     0.3911     0.8733         57        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.998      0.995      0.777Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size56/100      1.51G     0.8739     0.3835     0.8791         49        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.987      0.998      0.995      0.756Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size57/100      1.53G     0.8824     0.3906     0.8712         56        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.984      0.998      0.995      0.776Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size58/100      1.53G     0.8651     0.3856       0.87         40        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.987      0.994      0.799Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size59/100      1.51G     0.8714     0.3881     0.8755         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.981      0.995      0.774Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size60/100      1.51G     0.8584     0.3883     0.8713         54        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.981      0.995      0.781Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size61/100      1.51G     0.8537     0.3796     0.8658         38        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.984      0.999      0.995      0.801Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size62/100      1.51G     0.8624      0.388     0.8758         40        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992       0.99      0.995      0.793Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size63/100      1.51G      0.841     0.3857      0.864         52        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.993      0.995      0.767Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size64/100      1.51G     0.8598     0.3821       0.87         85        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.989      0.991      0.995      0.778Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size65/100      1.51G     0.8324     0.3825     0.8609         58        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.991      0.995      0.784Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size66/100      1.51G     0.8577     0.3801     0.8708         46        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.997      0.995      0.786Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size67/100      1.51G     0.8637     0.3803     0.8723         65        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.988      0.998      0.995      0.791Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size68/100      1.51G      0.841     0.3772     0.8654         82        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.979          1      0.995      0.781Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size69/100      1.51G     0.8025     0.3636     0.8565         51        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.984      0.985      0.994      0.797Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size70/100      1.51G      0.835     0.3664     0.8588         49        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.981      0.994      0.784Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size71/100      1.59G      0.845     0.3734     0.8596         38        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.98      0.995      0.994      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size72/100      1.59G     0.8206     0.3693     0.8711         38        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991       0.99      0.994      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size73/100      1.55G     0.8175     0.3641     0.8638         63        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.991      0.995      0.796Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size74/100      1.55G     0.8229     0.3611     0.8556         39        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.991      0.995      0.814Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size75/100      1.54G     0.8236     0.3669     0.8611         77        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.991      0.994      0.797Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size76/100      1.54G     0.8275     0.3671     0.8672         39        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.991      0.994      0.798Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size77/100      1.54G      0.819     0.3612     0.8627         37        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.991      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size78/100      1.58G     0.8077     0.3593     0.8684         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.992      0.995        0.8Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size79/100      1.56G     0.8067      0.359     0.8571         49        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.993      0.995      0.799Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size80/100      1.58G     0.8012     0.3588     0.8646         52        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997      0.991      0.995      0.798Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size81/100      1.56G     0.8159      0.364     0.8627         61        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.989      0.999      0.995      0.813Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size82/100      1.59G     0.8072     0.3583     0.8635         60        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.999      0.995      0.814Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size83/100      1.53G     0.8153     0.3605     0.8662         49        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.999      0.995      0.791Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size84/100      1.53G     0.7978     0.3544     0.8585         58        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994          1      0.995      0.786Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size85/100      1.51G     0.7747      0.351     0.8523         48        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995          1      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size86/100      1.51G     0.7944     0.3504     0.8563         67        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997          1      0.995      0.803Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size87/100      1.57G     0.7787     0.3409     0.8558         29        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.999      0.995      0.799Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size88/100      1.53G     0.7863     0.3461     0.8556         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.999      0.995       0.79Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size89/100      1.51G     0.7875     0.3413     0.8485         18        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.999      0.995      0.799Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size90/100      1.51G      0.794     0.3489     0.8616         38        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.999      0.995      0.809Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size91/100      1.51G     0.8086     0.3484     0.8653         87        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997          1      0.995      0.811Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size92/100      1.51G     0.7732     0.3432      0.862         31        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997          1      0.995      0.801Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size93/100      1.51G     0.7827     0.3431     0.8462         86        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997          1      0.995      0.807Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size94/100      1.51G     0.7678     0.3417     0.8454         43        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997          1      0.995      0.808Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size95/100      1.53G     0.7703     0.3397     0.8499         42        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.999      0.995       0.81Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size96/100      1.53G     0.7611      0.338     0.8461         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.999      0.995      0.811Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size97/100      1.53G     0.7629     0.3372     0.8534         41        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.999      0.995      0.807Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size98/100      1.53G     0.7512     0.3332     0.8415         51        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997      0.992      0.995      0.809Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size99/100      1.53G     0.7686     0.3399     0.8489         37        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997      0.992      0.995      0.808Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size100/100      1.53G     0.7692     0.3428     0.8536         64        640: 1Class     Images  Instances      Box(P          R      mAP50  m
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)all         46        521      0.997      0.992      0.995      0.812
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(plot_fname, dpi=250)100 epochs completed in 0.119 hours.
Optimizer stripped from runs/detect/train8/weights/last.pt, 22.5MB
Optimizer stripped from runs/detect/train8/weights/best.pt, 22.5MBValidating runs/detect/train8/weights/best.pt...
Ultralytics YOLOv8.0.118 🚀 Python-3.10.12 torch-2.0.1+cu118 CUDA:0 (NVIDIA GeForce RTX 3060, 12044MiB)
Model summary (fused): 168 layers, 11128293 parameters, 0 gradientsClass     Images  Instances      Box(P          R      mAP50  m
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)all         46        521      0.994      0.991      0.995      0.814胶塞         46        121      0.997          1      0.995      0.825推杆尾部         46        124      0.997          1      0.995       0.86针尾部         46        129      0.997          1      0.995      0.878针嘴         46         92      0.986          1      0.995      0.731歪嘴         46         14          1      0.936      0.995       0.78螺口         46         15      0.993          1      0.995      0.841小胶塞         46         26       0.99          1      0.995      0.785
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(plot_fname, dpi=250)
Speed: 0.5ms preprocess, 2.5ms inference, 0.0ms loss, 1.2ms postprocess per image
Results saved to runs/detect/train8

观察mAP50,在第三个Epoch时,已经达到了0.8,从第8个Epoch开始,已经稳定在了0.9,收敛很快
模型最终保存到了Results saved to runs/detect/train8

模型转换

在这里插入图片描述
修改main.py文件,mode更改为 onnx,并且model路径更改为训练好的模型地址,执行python main.py即可
执行完毕后将会在刚训练好的模型路径下生成转换后的onnx模型文件
在这里插入图片描述

使用yolov8s预训练模型训练的模型再试试我们的预测

yolo predict task=detect model=runs/yolov8s/best.pt source=datasets/injector_datasets/images/testImages show=True

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

预测效果还是很不错的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/63519.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面试被打脸,数据结构底层都不知道么--回去等通知吧

数据结构之常见的8种数据结构&#xff1a; -数组Array -链表 Linked List -堆 heap -栈 stack -队列 Queue -树 Tree -散列表 Hash -图 Graph 数据结构-链表篇 Linklist定义&#xff1a; -是一种线性表&#xff0c;并不会按线性的顺序存储数据&#xff0c;即逻辑上相邻…

【算法竞赛宝典】语言之争

【算法竞赛宝典】语言之争 题目描述代码展示 题目描述 代码展示 //语言之争 #include<fstream> #include<string>using namespace std;ifstream cin("language.in"); ofstream cout("language.out");string a; int n;int main() {int i;bool …

短信验证码服务

使用的是 阿里云 阿里云官网 1.找到 左上角侧边栏 -云通信 -短信服务 2.在快速学习测试处 &#xff0c;按照步骤完成快速学习&#xff0c;绑定要测试的手机号&#xff0c;选专用 【测试模板】&#xff0c;自定义模板需要人工审核&#xff0c;要一个工作日 3.右上角 获取 Acces…

敦煌网、newegg店铺优化三大方法,测评补单原来可以这样做

我们都知道敦煌网、newegg流量是一个店铺的血液&#xff0c;没有流量的支撑&#xff0c;其他也都将成为浮云。流量能够成为转化率的保证&#xff0c;如何让店铺拥有傲人的流量成为重要之重&#xff0c;店铺的流量又主要来源于以下几部分&#xff1a; 一、主要流量的来源 1.搜索…

PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化实践技术应用

我国高分辨率对地观测系统重大专项已全面启动&#xff0c;高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成&#xff0c;将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB&#xff0c;遥感大数据时…

【unity插件】使用BehaviorDesigner插件制作BOSS的AI行为树

文章目录 前言素材插件一、基础使用二、敌人物理攻击三、敌人面向玩家四、敌人法术攻击五、随机进行攻击六、敌人不同的阶段推荐学习视频源码完结 前言 Behavior Designer是一个行为树插件&#xff0c;是一款为了让策划&#xff0c;程序员&#xff0c;美术人员方便使用的可视化…

再谈IOS开发环境配置(2023-09-01 新)

关于IOS的开发&#xff0c;需要配置证书、密钥、管理标识符、功能配置等等&#xff0c;很是繁杂&#xff0c;以前也配置过&#xff0c;这次因为重新购买了新的M1笔记本&#xff0c;准备重新配置下&#xff0c;顺便记录&#xff0c;以便查询。 如果要开发IOS&#xff0c;首先需要…

Midjourney学习(一)prompt的基础

prompt目录 sd和mj的比较prompt组成风格表现风格时代描述表情色彩情绪环境 sd和mj的比较 自从去年9月份开始&#xff0c;sd就变得非常或火&#xff0c;跟它一起的还有一个midjourney。 他们就像是程序界的两种模式&#xff0c;sd是开源的&#xff0c;有更多的可能性更可控。但是…

c#多线程—基础概念到“双色球”项目实现(附知识点目录、代码、视频)

总结&#xff1a;视频中对于多线程讲的非常透彻&#xff0c;从线程基础概念—>.net不同版本出现的线程方法—>多线程常出现问题—>双色球项目实践&#xff0c;每个知识点都有代码实操&#xff0c;受益匪浅。附上学习笔记和实操代码。 视频 目录 一、线程、进程概念及优…

华为数通方向HCIP-DataCom H12-821题库(拖拽题,知识点总结)

以下是我在现有题库中整理的需要重点关注的考点内容,如有遗漏小伙伴可以留言补充。

Linux内核源码分析 (5)多处理器调度

Linux内核源码分析 (5)多处理器调度 文章目录 Linux内核源码分析 (5)多处理器调度注&#xff1a;本章节使用的内核版本为Linux 5.6.18一、 SMT和NUMA1、SMP (对称多处理器结构)2、NUMA &#xff08;非一致内存访问结构&#xff09; 二、多核调度三、调度域和调度组四、SMP调度详…

数据结构基本概念

一、数据 数据对象-数据元素-数据项(属性)&#xff0c;前者由后者组成 二、数据结构 定义&#xff1a;按某种关系的数据元素的集合 三、数据类型 1、原子类型&#xff08;例如整型&#xff09; 2、结构类型&#xff08;由原子类型组成&#xff0c;例如数组&#xff09; 3、…

ReID网络:MGN网络(4) - Loss计算

1. MGN Loss MGN采用三元损失(Triplet Loss)。 三元损失主要用于ReID算法&#xff0c;目的是帮助网络学习到一个好的Embedding信息。之所以称之为三元损失&#xff0c;主要原因在于在训练中&#xff0c;参与计算Loss的分别有Anchor、Positive和Negative三方。 2. Triplet Lo…

力扣:82. 删除排序链表中的重复元素 II(Python3)

题目&#xff1a; 给定一个已排序的链表的头 head &#xff0c; 删除原始链表中所有重复数字的节点&#xff0c;只留下不同的数字 。返回 已排序的链表 。 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - …

ChatGPT插件的优缺点

虽然西弗吉尼亚大学的研究人员看到了最新的官方ChatGPT插件——名为“代码解释器”&#xff08; Code Interpreter&#xff09;的教育应用潜力&#xff0c;但他们也发现&#xff0c;对于使用计算方法处理针对癌症和遗传疾病的定向治疗的生物数据的科学家来说&#xff0c;这款插…

[C/C++]指针详讲-让你不在害怕指针

个人主页&#xff1a;北海 &#x1f390;CSDN新晋作者 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏✨收录专栏&#xff1a;C/C&#x1f91d;希望作者的文章能对你有所帮助&#xff0c;有不足的地方请在评论区留言指正&#xff0c;大家一起学习交流&#xff01;&#x1f9…

Java for循环每次都通过list.size()和 string.length()获取大小性能

有人说在for循环之前用一个局部变量先获取到list.size()、str.length()&#xff0c;然后在for循环的判断条件里通过这个局部变量替换list.size()、str.length()会节省数据计算的时间。事实真的是这样吗&#xff1f;下面就为大家解答这个问题。 说明&#xff1a;此文章针对Andro…

华为云云服务器评测|基于华为云云耀云服务器L实例开展性能评测,例如 MySQL、Clickhouse、Elasticsearch等等

在当今云计算时代&#xff0c;越来越多的企业和个人开始选择将应用部署在云服务器上&#xff0c;以便更好地满足高性能、可靠性和可扩展性等需求。而华为云云耀云服务器L实例不仅提供了高性能和可靠性的计算和存储资源&#xff0c;而且具有灵活和高效的成本控制&#xff0c;深受…

DDR2 IP核调试记录1

一、IP核生成不成功可能原因 1、打开 Quartus II 软件时&#xff0c;请右键选择以管理员方式运行&#xff0c;切记&#xff0c;否则可能导致 IP 生成不成功。 2、创建工程时不要将工程创建在和 Quartus II 安装目录相同的盘符下&#xff0c;否则可能导致生产 IP 失败。 3、如果…

Virtualenvwrapper 的安装教程

Virtualenvwrapper Virtaulenvwrapper是virtualenv的扩展包&#xff0c;用于更方便管理虚拟环境&#xff0c;它可以做&#xff1a; 将所有虚拟环境整合在一个目录下管理&#xff08;新增&#xff0c;删除&#xff0c;复制&#xff09;虚拟环境快速切换虚拟环境 安装方法 Li…