Datawhale 强化学习笔记(二)马尔可夫过程,DQN 算法

文章目录

  • 参考
  • 马尔可夫过程
  • DQN 算法(Deep Q-Network)
    • 如何用神经网络来近似 Q 函数
    • 如何用梯度下降的方式更新网络参数
      • 强化学习 vs 深度学习
    • 提高训练稳定性的技巧
      • 经验回放
      • 目标网络
    • 代码实战
  • DQN 算法进阶
    • Double DQN
    • Dueling DQN 算法
    • 代码实战

参考

在线阅读文档
github 教程
开源框架 JoyRL datawhalechina/joyrl: An easier PyTorch deep reinforcement learning library. (github.com)

马尔可夫过程

强化学习是解决序列决策问题的有效方法,而序列决策问题的本质是在与环境交互的过程中学习到一个目标的过程。
马尔可夫决策过程是强化学习中最基本的问题模型,它能够以数学的形式来表达序列决策过程。

在这里插入图片描述
比较重要的概念

马尔科夫决策过程
马尔科夫性质
回报
状态转移矩阵

DQN 算法(Deep Q-Network)

它的主要贡献就是在 Q-learning 算法的基础上引入了深度神经网络来近似动作价值函数 ,从而能够处理高维的状态空间。除了用深度网络代替 Q 表之外, DQN 算法还引入了一些技巧,如经验回放和目标网络。

如何用神经网络来近似 Q 函数

类似于 Q表,可以就用来近似动作价值函数 Q ( s , a ) Q(s, a) Q(s,a), 即将状态向量 s s s 作为输入,并输出所有动作 a = ( a 1 , a 2 , . . . , a n ) a=(a_1, a_2,...,a_n) a=(a1,a2,...,an)对应的价值。
y = Q θ ( s , a ) y = Q_{\theta}(s, a) y=Qθ(s,a)
Q 表是一个二维表格,而神经网络是一个实实在在的函数。前者只能处理离散的状态和动作空间,而神经网络可以处理连续的状态和动作空间。在 Q 表中我们描述状态空间的时候一般用的是状态个数,而在神经网络中我们用的是状态维度。
无论是 Q 表还是 DQN 中的神经网络,它们输出的都是每个动作对应的 Q 值,即预测,而不是直接输出动作。要想输出动作,就需要额外做一些处理,例如结合贪心算法选择 Q 值最大对应的动作等,这就是我们一直强调的控制过程。

如何用梯度下降的方式更新网络参数

在这里插入图片描述

强化学习 vs 深度学习

训练方式是一样的,都是将样本喂入网络中,然后通过梯度下降的方式来更新网络参数,使得损失函数最小,即能够逼近真实的 Q 值。

不同点

  • 强化学习用于训练的样本(包括状态、动作和奖励等等)是与环境实时交互得到的,而深度学习则是事先准备好的。
  • 本质上来讲强化学习和深度学习所要解决的问题是完全不同的,前者用于解决序列决策问题,后者用于解决静态问题例如回归、分类、识别等任务

提高训练稳定性的技巧

经验回放

这个样本一般包括当前的状态 s t s_t st 、当前动作 a t a_t at 、下一时刻的状态 s t + 1 s_{t+1} st+1 、奖励 r t + 1 r_{t+1} rt+1 以及终止状态的标志 done (通常不呈现在公式中),也叫做一个状态转移(transition ),即 ( s t , a t , s t + 1 , r t + 1 s_t, a_t,s_{t+1}, r_{t+1} st,at,st+1,rt+1 )。在 Q-learning 算法中,每次交互得到一个样本之后,就立马拿去更新模型了。

这样的方式用在神经网络中会有一些问题,这跟梯度下降有关。首先每次用单个样本去迭代网络参数很容易导致训练的不稳定,从而影响模型的收敛,在深度学习基础的章节中我们也讲过小批量梯度下降是目前比较成熟的方式。其次,每次迭代的样本都是从环境中实时交互得到的,这样的样本是有关联的,而梯度下降法是基于一个假设的,即训练集中的样本是独立同分布的。
经验回放会把每次与环境交互得到的样本都存储在一个经验回放中,然后每次从经验池中随机抽取一批样本来训练网络。
在这里插入图片描述
在训练初期智能体生成的样本虽然能够帮助它朝着更好的方向收敛,但是在训练后期这些前期产生的样本相对来说质量就不是很好了。经验回放的容量需要有一定的容量限制,太小导致收集到的样本具有一定的局限性,太大失去了经验本身的意义。

目标网络

使用了一个每隔若干步才更新的目标网络。
目标网络和当前网络结构都是相同的,都用于近似 Q 值,在实践中每隔若干步才把每步更新的当前网络参数复制给目标网络,这样做的好处是保证训练的稳定,避免 Q 值的估计发散。如果当前有个小批量样本导致模型对
值进行了较差的过估计,如果接下来从经验回放中提取到的样本正好连续几个都这样的,很有可能导致 Q
值的发散。
在这里插入图片描述
对于目标网络的作用,这里举一个典型的例子,这里的目标网络好比皇帝,而当前网络相当于皇帝手下的太监,每次皇帝在做一些行政决策时往往不急着下定论,会让太监们去收集一圈情报,然后集思广益再做决策。

代码实战

github 教程 中 notebooks 中的第7章代码

和大多数强化学习算法一样,分为交互采样和模型更新两个步骤。
其中交互采样的目的就是与环境交互并产生样本,模型更新则是利用得到的样本来更新相关的网络参数,更新方式涉及每个强化学习算法的核心。
在这里插入图片描述

根据强化学习的原理我们需要优化的是对应状态下不同动作的长期价值,然后每次选择价值最大对应的动作就能完成一条最优策略,使用神经网络表示Q表时也是如此,我们将输入的状态数作为神经网络的输入层,动作数作为输出层,这样的神经网络表达的功能就跟在Q learning中的Q表是一样的,只不过具有更强的鲁棒性。

DQN 算法进阶

改进的角度不同,本质上都是通过提高预测的精度控制过程中的探索度来改善算法性能。

  • 网络层面

    • Double DQN (google DeepMind 2015年12月提出)
      • 通过引入两个网络解决 Q 值过估计的问题。改进目标 Q 值的计算来优化算法
    • Dueling DQN
      • 通过优化神经网络的结构
    • Noisy DQN
      • 优化网络结构,但不是为了提高Q值的估计,而是增强网络的探索能力
      • 引入噪声层
  • 经验回放

    • PER DQN(优先经验回放 ,prioritized experience replay)
      • 优化深度网络中梯度下降的方式,或者说网络参数更新的方式
      • 和数据结构中优先队列与普通队列一样,会在采样过程中赋予经验回放中样本的优先级。

Double DQN

动作选择和动作评估两个过程分离开来,从而减轻了过估计问题。
在 DQN 算法中,大臣是不管好的还是坏的情报都会汇报给皇帝的,而在 Double DQN 算法中大臣会根据自己的判断将自己认为最优的情报汇报给皇帝,即先在策略网络中找出最大 Q 值对应的动作。这样一来皇帝这边得到的情报就更加精简并且质量更高了,以便于皇帝做出更好的判断和决策,也就是估计得更准确了。

DQN 将下一个状态对应的最大Q值作为实际值(因为实际值通常不能直接求得,只能近似),这种做法实际上只是一种近似,可能会导致过估计等问题。 而在Double DQN中,它不直接通过最大化的方式选取目标网络计算的所有可能 Q 值,而是首先通过估计网络选取最大 Q 值对应的动作

Dueling DQN 算法

在这里插入图片描述

代码实战

github 教程 中 notebooks 中的第8章代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/634842.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于LDA的评论大数据的分析及主题建模

1.微博的关键词大数据采集; 已完成,待优化 2.LDA 错误1:使用了import pyLDAvis.sklearn,提示没有模块no module named pyldavis.sklearn。 默认安装 pyLDAvis3.4.1,最后降级处理,解决方式: …

docker ps -a 要求只显示自己想要的信息

在使用 docker ps -a 要求只显示这下面这几个字段,不显示其他的内容,方便查看哪些容器在运行,那些已经挂起。 例子: 我只想想显示这几个字段: CONTAINER ID STATUS NAMES docker ps -a --format "table {{.ID}…

EasyX图形化学习(三)

1.帧率: 即每秒钟界面刷新次数,下面以60帧为例: 1.数据类型 clock_t: 用来保存时间的数据类型。 2.clock( ) 函数: 用于返回程序运行的时间,无需参数。 3.例子: 先定义所需帧率: const …

20230118-【UNITY 学习】增加攀登系统

替换脚本PlayerMovement_04.cs using System.Collections; using System.Collections.Generic; using UnityEngine;public class PlayerMovement_05 : MonoBehaviour {private float moveSpeed; // 玩家移动速度public float walkSpeed 7; // 行走速度public float sprintSpee…

[笔记]深度学习入门 基于Python的理论与实现(一)

代码仓库 gitee 1. python 入门 1.5之前是python安装和基础语法, 我直接跳过了 1.5 Numpy 深度学习中经常出现数组和矩阵运算,Numpy 的数组类 numpy.array 提供了很多便捷的方法 1.5.1 导入 Numpy import numpy as np1.5.2 生成 Numpy 数组 np.array()&#xf…

C++ 设计模式之策略模式

【声明】本题目来源于卡码网(题目页面 (kamacoder.com)) 【提示:如果不想看文字介绍,可以直接跳转到C编码部分】 【设计模式大纲】 【简介】什么是策略模式(第14种模式) 策略模式是⼀种⾏为型设计模式&…

西门子WINCC常用C脚本1

1.置位,复位,取反 获取变量值:GetTagBit(可以是位也可以是字节,字,双字等具体字母不同) 设置变量值:SetTagBit 置位:SetTagBit("变量名",1) 复位&#xff…

Node+Express编写接口---前端

前端页面 vue_node_admin: 第一个以node后端,vue为前端的后台管理项目https://gitee.com/ah-ah-bao/vue_node_admin.git

java-log4j日志冲突解决

一、概述 java日志框架较多&#xff0c;其中主流的slf4j和commons-logging是日志接口&#xff0c;log4j、log4j2和logback是真正的日志实现库。 二、具体库单独使用 2.1 log4j <dependency><groupId>log4j</groupId><artifactId>log4j</artifa…

Ceph分布式存储(1)

目录 一.ceph分布式存储 Ceph架构&#xff08;自上往下&#xff09; OSD的存储引擎&#xff1a; Ceph的存储过程&#xff1a; 二. 基于 ceph-deploy 部署 Ceph 集群 20-40节点上添加3块硬盘&#xff0c;一个网卡&#xff1a; 10节点为admin&#xff0c;20-40为node&…

指针理解C部分

目录 1.二级指针 2.指针数组 2.1指针数组的定义和表现形式 2.2指针数组模拟实现二维数组 2.2.1二维数组 2.2.2使用指针数组模拟实现二维数组 3.字符指针 2.数组指针 3.二维数组传参 4.函数指针 4.1函数指针变量的定义和创建 4.2函数指针变量的使用 4.3两段有趣的代码 4.…

Python自动化测试中APScheduler Flask的应用示例

使用背景 实际项目中&#xff0c;需要验证打点数据在各个系统中收集是否一致&#xff0c;而部分节点打点数据收集是通过异步任务实现的&#xff0c;等待时间比较久。为应对业务异步操作处理&#xff0c;实现异步数据的收集&#xff0c;经过调研后&#xff0c;选择了 APSchedule…

JMeter实操入门之登录

JMeter实操入门之登录 前言初级-无变量的登录线程组取样器-HTTP请求 进阶-定义变量的登录用户定义的变量获取JSON返回的数据-tokentoken设置全局变量 前言 安装及环境配置教程可移步&#xff1a;JMeter安装与配置环境 本篇文章针对小白进一步的认识及运用JMeter&#xff0c;围绕…

湖(岛屿)

from book&#xff1a;挑战程序设计竞赛

表的增删改查 进阶(二)

&#x1f3a5; 个人主页&#xff1a;Dikz12&#x1f525;个人专栏&#xff1a;MySql&#x1f4d5;格言&#xff1a;那些在暗处执拗生长的花&#xff0c;终有一日会馥郁传香欢迎大家&#x1f44d;点赞✍评论⭐收藏 目录 3.新增 4.查询 聚合查询 聚合函数 GROUP BY子句 HA…

shell编程学习

学习目标&#xff1a; 一周掌握 shell编程 变量的高级用法 变量替换 ##变量替换&#xff08;贪婪&#xff0c;从前往后匹配&#xff0c;匹配到进行删除&#xff09; test1I love you,you love me echo $test1 handletest1${test1##*ov} echo $handletest1##变量替换&#xff…

C#,入门教程(07)——软件项目的源文件与目录结构

上一篇&#xff1a; C#&#xff0c;入门教程(06)——解决方案资源管理器&#xff0c;代码文件与文件夹的管理工具https://blog.csdn.net/beijinghorn/article/details/124895033 创建新的 C# 项目后&#xff0c; Visual Studio 会自动创建一系列的目录与文件。 程序员后面的工…

使用 Kali Linux Hydra 工具进行攻击测试和警报生成

一、Hydra 工具和 Kali Linux 简介 在网络安全领域中&#xff0c;渗透测试是评估系统密码强度的重要组成部分。Hydra 是一款由黑客组织“The Hackers Choice”开发的开源登录破解工具&#xff0c;支持50多种协议。本教程将探索如何将 Hydra 与 Kali Linux 结合使用&#xff0c…

Android.mk和Android.bp的区别和转换详解

Android.mk和Android.bp的区别和转换详解 文章目录 Android.mk和Android.bp的区别和转换详解一、前言二、Android.mk和Android.bp的联系三、Android.mk和Android.bp的区别1、语法&#xff1a;2、灵活性&#xff1a;3、版本兼容性&#xff1a;4、向后兼容性&#xff1a;5、编译区…

新上线一个IT公司微信小程序

项目介绍 项目背景: 一家IT公司,业务包含以下六大块: 1、IT设备回收 2、IT设备租赁 3、IT设备销售 4、IT设备维修 5、IT外包 6、IT软件开发 通过小程序,提供在线下单,在线制单,在线销售,业务介绍,推广,会员 项目目的: 业务介绍: 包含企业业务介绍 客户需…