【Kafka】Kafka介绍、架构和概念

目录

  • Kafka介绍
  • Kafka优势
  • Kafka应用场景
  • Kafka基本架构和概念
    • Producer
    • Consumer/Consumer Group
    • Broker
    • ZooKeeper
    • Topic
    • Partition
    • Replicas
    • Offset
    • segment

Kafka介绍

Kafka是是一个优秀的分布式消息中间件,关于常用的消息中间件对比可参考文章:消息中间件概述。

Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多生产者、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。

Kafka主要设计目标如下:

  • 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能。
  • 高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输。
  • 支持Kafka Server间的消息分区,及分布式消费,同时保证每个分区内的消息顺序传输。
  • 同时支持离线数据处理和实时数据处理。
  • 支持在线水平扩展

有两种主要的消息传递模式:点对点传递模式、发布-订阅模式。大部分的消息系统选用发布-订阅模式。Kafka就是一种发布-订阅模式。

对于消息中间件,消息分推拉两种模式。Kafka只有消息的拉取,没有推送,可以通过轮询实现消息的推送。

Kafka具有四个核心API:

  1. Producer API:允许应用程序将记录流发布到一个或多个Kafka主题。
  2. Consumer API:允许应用程序订阅一个或多个主题并处理为其生成的记录流。
  3. Streams API:允许应用程序充当流处理器,使用一个或多个主题的输入流,并生成一个或多个输出主题的输出流,从而有效地将输入流转换为输出流。
  4. Connector API:允许构建和运行将Kafka主题连接到现有应用程序或数据系统的可重用生产者或使用者。例如,关系数据库的连接器可能会捕获对表的所有更改。

Kafka优势

  1. 高吞吐量:单机每秒处理几十上百万的消息量。即使存储了许多TB的消息,它也保持稳定的性能。
  2. 高性能:单节点支持上千个客户端,并保证零停机和零数据丢失。
  3. 持久化数据存储:将消息持久化到磁盘。通过将数据持久化到硬盘以及replication防止数据丢失。
  4. 分布式系统,易于向外扩展。所有的Producer、Broker和Consumer都会有多个,均为分布式的。无需停机即可扩展机器。多个Producer、Consumer可能是不同的应用。
  5. 可靠性 - Kafka是分布式,分区,复制和容错的。
  6. 客户端状态维护:消息被处理的状态是在Consumer端维护,而不是由server端维护。当失败时能自动平衡。
  7. 支持online和offline的场景。
  8. 支持多种客户端语言。Kafka支持Java、.NET、PHP、Python等多种语言。

Kafka应用场景

日志收集: 一个公司可以用Kafka可以收集各种服务的Log,通过Kafka以统一接口服务的方式开放给各种Consumer;

消息系统: 解耦生产者和消费者、缓存消息等;

用户活动跟踪: Kafka经常被用来记录Web用户或者App用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到Kafka的Topic中,然后消费者通过订阅这些Topic来做实时的监控分析,亦可保存到数据库;

运营指标: Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告;

流式处理: 比如Spark Streaming和Storm。

Kafka基本架构和概念

kafka的整体架构如下图所示

图片来源:https://mp.weixin.qq.com/s/_g11mmmQse6KrkUE8x4abQ

在这里插入图片描述

从大的组件上看,kafka主要由Producer、Broker、Consumer 以及负责集群管理的 ZooKeeper 组成。除了极大组件,整个消息的流转还涉及到还有几个特别重要的概念—主题(Topic)、分区(Partition)、分段(segment)、位移(offset)。

先来整体了解下基本的架构流程。

  1. Broker创建好后会把集群的元数据存到Zookeeper中,供生产者和消费者读取使用
  2. Producer负责生产消息,获取Broker的元信息,并把消息发送到Broker
  3. Broker可以有不同主题Topic,Topic是一个虚拟的概念
  4. Topic又可以有不同的分区Partition,分区由不同的分段segment组成
  5. 最后消息由Broker根据消息属性路由到了指定的主题的指定分区
  6. 多个消费者Consumer可以组成消费者组Consumer Group,共同消费不同分区的消息
  7. 消费者获取集群的Topic等元数据,并根据消息的偏移量offset来读取消息

下面来具体看下各个组件和概念。

Producer

生产者,负责消息的创建并通过一定的路由策略发送消息到合适的 Broker。broker将该消息追加到当前用于追加数据的 segment 文件中。

一般情况下,一个消息会被发布到一个特定的主题(Topic)上。

  1. 默认情况下通过轮询把消息均衡地分布到主题的所有分区上。
  2. 在某些情况下,生产者会把消息直接写到指定的分区。这通常是通过消息键和分区器来实现的,分区器为键生成一个散列值,并将其映射到指定的分区上。这样可以保证包含同一个键的消息会被写到同一个分区上。
  3. 生产者也可以使用自定义的分区器,根据不同的业务规则将消息映射到分区。

Consumer/Consumer Group

消费者,负责从 Broker 中拉取(Pull)订阅的消息并进行消费,通常多个消费者(Consumer)构成一个分组(Consumer Group),消费者组是为了保证同一个消息只能被一个组里一个消费者消费,同时可以动态扩容。

具有如下特点:

  1. 消费者组订阅一个或多个主题,并按照消息生成的顺序读取它们。
  2. 消费者通过检查消息的偏移量来区分已经读取过的消息。偏移量是另一种元数据,它是一个不断递增的整数值,在创建消息时,Kafka 会把它添加到消息里。在给定的分区里,每个消息的偏移量都是唯一的。消费者把每个分区最后读取的消息偏移量保存在Zookeeper 或Kafka上,如果消费者关闭或重启,它的读取状态不会丢失。
  3. 消费者是消费组的一部分。群组保证每个分区只能被一个消费者使用。
  4. 如果一个消费者失效,消费组里的其他消费者可以接管失效消费者的工作,再平衡,分区重新分配。

在这里插入图片描述

消费者与消费组这种模型可以让整体的消费能力具备横向伸缩性,我们可以增加(或减少) 消费者的个数来提高(或降低)整体的消费能力。对于分区数固定的情况,一味地增加消费者 并不会让消费能力一直得到提升,如果消费者过多,出现了消费者的个数大于分区个数的情况, 就会有消费者分配不到任何分区。

Broker

服务实例,负责消息的持久化、中转等功能。一个独立的Kafka 服务器被就是一个broker。

broker 是集群的组成部分。每个集群都有一个broker 同时充当了集群控制器Controller的角色。在每一个Broker在启动时都会像向ZK注册信息,ZK会选取一个最早注册的Broker作为Controller,后面Controller会与ZK进行数据交互获取元数据(即整个Kafka集群的信息,例如有那些Broker,每个Broker中有那些Partition等信息),并负责管理工作,包括将分区分配给broker 和监控broker,其他Broker是与Controller进行交互进而感知到整个集群的所有信息。

在集群中,一个分区从属于一个broker,该分区被称为分区的首领Leader。一个Topic的不同分区一般是分布在不同的broker中。

在这里插入图片描述

broker 可以为消费者提供服务,对读取分区的请求作出响应,返回已经提交到磁盘上的消息。

ZooKeeper

负责 broker、consumer 集群元数据的管理等;

注意:Producer 端直接连接 broker,不在 zk 上存任何数据,只是通过 ZK 监听 broker 和 topic 等信息

Topic

每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。

Kafka 按 topic 对消息进行分类,我们在收发消息时只需指定 topic。

的Topic是逻辑概念,并没有物理存在,但是注意物理上不同Topic的消息是分开存储的。

主题就好比数据库的表,尤其是分库分表之后的逻辑表。

Partition

分区。为了提升系统的吞吐,一个 topic 下通常有多个 partition,partition 分布在不同的 Broker 上,用于存储 topic 的消息,这使 Kafka 可以在多台机器上处理、存储消息,给 kafka 提供给了并行的消息处理能力和横向扩容能力。另外,为了提升系统的可靠性,partition 通常会分组,且每组有一个主 partition、多个副本 partition,且分布在不同的 broker 上,从而起到容灾的作用。

下面是分区数量和集群数量不同情况时,分区的分布情况:

  1. 如果某topic有N个partition,集群有N个broker,那么每个broker存储该topic的一个partition。
  2. 如果某topic有N个partition,集群有(N+M)个broker,那么其中有N个broker存储该topic的一个partition,剩下的M个broker不存储该topic的partition数据。
  3. 如果某topic有N个partition,集群中broker数目少于N个,那么一个broker存储该topic的一个或多个partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致Kafka集群数据不均衡。

消息以追加的方式写入分区,然后以先入先出的顺序读取。

在这里插入图片描述

Replicas

副本。即分区的副本。上面我们说到为了提升系统的可靠性,partition 通常会分组,且每组有一个主 partition、多个副本 partition,且分布在不同的 broker 上,从而起到容灾的作用。

在这里插入图片描述

图中每个TopicA-x都是一个Partition,其中后面的数字代表了一个分区中的第几个副本,同一个分区的副本需要分布在不同的broker中。

此外,我们说过多个副本Partition中会选取一个作为leader,其他的作为follower。生产者在发送数据的时候,是直接发送到leader partition里面,然后follower partition会去leader那里自行同步数据,消费者消费数据的时候,也是从leader那去消费数据的。

副本处于不同的 broker 中,当 leader 副本出现故障时,从 follower 副本中重新选举新的 leader 副本对外提供服务。Kafka 通过多副本机制实现了故障的自动转移,当 Kafka 集群中某个 broker 失效时仍然能保证服务可用。

关于如何确定副本故障和故障转移的,后面还会详细介绍。

Offset

偏移量。有两个:生产者偏移量(也是消息存储的偏移量)和消费者偏移量。

  1. 生产者Offset

即消息在日志中的位置。消息写入的时候,每一个分区都有一个offset,这个offset就是生产者的offset,同时也是这个分区的最新最大的offset。offset 是消息在分区中的唯一标识,是一个单调递增且不变的值。

在这里插入图片描述

有些时候没有指定某一个分区的offset,这个工作kafka帮我们完成。

Kafka 通过它来保证消息在分区内的顺序性,不过 offset 并不跨越分区,所以,Kafka 保证的是分区有序而不是主题有序。但是在需要严格保证消息的消费顺序的场景下,需要将partition数目设为1。

  1. 消费者Offset

当消费者进行消费的时候,是要去指分区找消息的Offset,从而找到消息进行消费。他与分区的最新消息的Offset是不一样的。他是存储在消费者组中,每个分区都有一个Offset,用于标识,当前消费者组下一个要消费消息的Offset。

在这里插入图片描述

如上图,这是某一个分区的offset情况,生产者写入的offset是最新最大的值是12,而当Consumer A进行消费时,从0开始消费,一直消费到了9,消费者的offset就记录在9,Consumer B就纪录在了11。等下一次他们再来消费时,他们可以选择接着上一次的位置消费,当然也可以选择从头消费,或者跳到最近的记录并从“现在”开始消费。

segment

分段。宏观上看,一个 partition 对应一个日志(Log)。由于生产者生产的消息会不断追加到 log 文件末尾,为防止 log 文件过大导致数据检索效率低下,Kafka 采取了分段和索引机制,将每个 partition 分为多个 segment,同时也便于消息的维护和清理。每个 segment 包含一个.log 日志文件、两个索引(.index、timeindex)文件以及其他可能的文件。每个 Segment 的数据文件以该段中最小的 offset 为文件名,当查找 offset 的 Message 的时候,通过二分查找快找到 Message 所处于的 Segment 中。

参考
https://mp.weixin.qq.com/s/_g11mmmQse6KrkUE8x4abQ
https://mp.weixin.qq.com/s/v6jUK8TIPi1Debfd40GU3w

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/633666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Docker】Nacos的单机部署及集群部署

一、Nacos的介绍 Nacos是一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。 动态服务发现:Nacos支持DNS与RPC服务发现,提供原生SDK、OpenAPI等多种服务注册方式和DNS、HTTP与API等多种服务发现方式。服务健康监测:Nacos提供…

Python数据分析案例32——财经新闻爬虫和可视化分析

案例背景 很多同学的课程作业都是需要自己爬虫数据然后进行分析,这里提供一个财经新闻的爬虫案例供学习。本案例的全部数据和代码获取可以参考:财经新闻数据 数据来源 新浪财经的新闻网,说实话,他这个网站做成这样就是用来爬虫的…

鸿蒙开发(五)鸿蒙UI开发概览

从用户角度来讲,一个软件拥有好看的UI,那是锦上添花的事情。再精确的算法,再厉害的策略,最终都得通过UI展现给用户并且跟用户交互。那么,本篇一起学习下鸿蒙开发UI基础知识,认识下各种基本控件以及使用方式…

Zoho Survey评价:功能全面,值得一试

通常来讲,我们在使用一款问卷调查制作工具制作问卷时会有哪些需求呢? 用户需求 1、操作简单,易上手。 2、能够满足用户个性化的需求。 3、提供多语言服务。 4、能够帮助发布以及数据收集。 5、简化数据分析 市面上的问卷调查制作工具都…

探索FTP:原理、实践与安全优化

引言 在正式开始讲解之前,首先来了解一下文件存储的类型有哪些。 DAS、SAN和NAS是三种不同的存储架构,分别用于解决不同场景下的数据存储需求。 DAS (Direct Attached Storage 直接附加存储):DAS 是指将存储设备(如硬盘&#x…

阿里云国外云服务器地域、收费标准及活动报价参考

阿里云国外服务器优惠活动「全球云服务器精选特惠」,国外服务器租用价格24元一个月起,免备案适合搭建网站,部署独立站等业务场景,阿里云服务器网aliyunfuwuqi.com分享阿里云国外服务器优惠活动: 全球云服务器精选特惠…

AI语音合成工具-Lalamu Studio

近期,Lalamu Studio开启了beta版本测试:Lalamu Studio。该工具整合了TTS和lip sync功能,可以让任意视频中的人物开口说话,并精确模拟口型。 例如,选择一段视频素材,添加由Ai合成的语音,即可完成…

为什么要选择“零代码”开发的智慧能源管理平台?

全球低代码市场发展较早,集中度逐渐凸显,零代码市场尙未形成市场格局,很多企业出现“业务部门不懂技术,技术部门不懂业务”的现象往往会制约软件的开发进度,如何快速搭建软件系统应用,助力业务增长与效率提…

京东云开发者DDD妙文欣赏(1)

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 京东云开发者原文链接:DDD落地实践-架构师眼中的餐厅>>,以下简称《餐厅》。 我截图时,阅读量有6044,在同类文章中已经算是热文了…

山西电力市场日前价格预测【2024-01-20】

日前价格预测 预测说明: 如上图所示,预测明日(2024-01-20)山西电力市场全天平均日前电价为304.16元/MWh。其中,最高日前电价为486.22元/MWh,预计出现在18:15。最低日前电价为87.43元/MWh,预计出…

adb 配对+无线连接

配对 打开手机开发者选项-无线调试-使用配对码配对设备 出现ip端口和配对码后,电脑输入命令: adb pair ip:端口 eg:adb pair 192.168.137.244:39683 提示输入配对码:就按照手机上的输入。 此时配对成功 连接 再使用命令adb connect ip:port…

Java工具类:将xml转为Json

目录 一、场景二、工具类三、测试类四、测试结果 一、场景 在对接第三方接口时,由于接口返回的并不是常见的Json,而是XML,所以需要将XML转为Json,方便后续处理 二、工具类 package com.xxx.util;import org.apache.commons.lang…

力扣 | 15. 三数之和

暴力解法import java.util.*;public class _15_ThreeSum1 {public List<List<Integer>> threeSum(int[] nums) {if (nums null || nums.length < 3)return new ArrayList<>();Set<List<Integer>> res new HashSet<>();Arrays.sort(nu…

Linux的常用命令

查看命令的帮助 命令名 --help 切换目录命令cd cd app 切换到app目录 cd .. 切换到上一层目录 cd / 切换到系统根目录 cd ~ 切换到用户主目录 cd - 切换到上一个所在目录 使用tab键来补全文件路径 列出文件列表&#xff1a;ls ll ls(list)是一个非常有用的命令&…

排序:计数排序

目录 思想&#xff1a; 操作步骤&#xff1a; 思路&#xff1a; 注意事项&#xff1a; 优缺点&#xff1a; 代码解析&#xff1a; 完整代码展示&#xff1a; 思想&#xff1a; 计数排序又称为鸽巢原理&#xff0c;是对哈希直接定址法的变形应用。 操作步骤&#xff…

基于 Hologres+Flink 的曹操出行实时数仓建设

本文整理自曹操出行实时计算负责人林震基于 HologresFlink 的曹操出行实时数仓建设的分享&#xff0c;内容主要分为以下六部分&#xff1a; 曹操出行业务背景介绍曹操出行业务痛点分析HologresFlink 构建企业级实时数仓曹操出行实时数仓实践曹操出行业务成果分析未来展望 一、曹…

AI新势力|将创业当作修行的BookGPT

近期&#xff0c;科技慢半拍联合AIGC开放社区采访了AI创业产品BootGPT的创始人陆再谋。陆总分享了他的创业之旅&#xff0c;从贵州到北京&#xff0c;再回到贵州的整段创业经历&#xff0c;从最初的困难到逐渐取得的成果&#xff0c;打造出了BookGPT这款创业产品。 在本次访谈中…

c++学习笔记-STL案例-机房预约系统4-管理员模块

前言 衔接上一篇“c学习笔记-STL案例-机房预约系统3-登录模块”&#xff0c;本文主要设计管理员模块&#xff0c;从管理员登录和注销、添加账号、显示账号、查看机房、清空预约五个功能进行分析和实现。 目录 7 管理员模块 7.1 管理员登录和注销 7.1.1 构造函数 ​编辑7.1.2…

加速电压对扫描电子显微镜成像的影响

扫描电子显微镜&#xff08;SEM&#xff09;是一种利用聚焦电子束扫描样品表面&#xff0c;通过激发和收集二次电子、特征X射线等信号&#xff0c;获得样品表面形貌和成分信息的分析仪器。在SEM成像过程中&#xff0c;加速电压是一个关键参数&#xff0c;对成像效果具有重要影响…

【概述版】悲剧先于解析:在大型语言模型的新时代,历史重演了

这篇论文探讨了大型语言模型&#xff08;LLM&#xff09;的成功对自然语言处理&#xff08;NLP&#xff09;领域的影响&#xff0c;并提出了在这一新时代中继续做出有意义贡献的方向。作者回顾了2005年机器翻译中大型语法模型的第一个时代&#xff0c;并从中汲取教训和经验。他…