import torch
import torchvision
import numpy as np
import syssys. path. append( "路径" )
import d2lzh_pytorch as d2l'''
1. 获取和读取数据
2. 初始化参数和模型
3. 定义softmax运算
4. 定义模型
5. 定义损失函数:交叉熵损失函数
6. 定义分类准确率
7. 训练模型
8. 预测
''' '''
----------------- !!分类计算中,每个样本都要进行标签中类别数个预测,来判断该样本属于那种分类的概率大!!!!
''' '''
-----------------------------------------------------------获取和读取数据
'''
batch_size = 256
train_iter, test_iter = d2l. load_data_fashion_mnist( batch_size) '''
----------------------------------------------------------初始化模型参数
'''
num_inputs = 784
num_outputs = 10
w = torch. tensor( np. random. normal( 0 , 0.01 , size= ( num_inputs, num_outputs) ) , dtype= torch. float , )
b = torch. zeros( num_outputs, dtype= torch. float )
w. requires_grad_( requires_grad= True )
b. requires_grad_( requires_grad= True ) '''
----------------------------------------------------------定义softmax运算
'''
X = torch. tensor( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] ] )
print ( X. sum ( dim= 0 , keepdim= True ) )
print ( X. sum ( dim= 1 , keepdim= True ) ) def softmax ( X) : X_exp = X. exp( ) partition = X_exp. sum ( dim= 1 , keepdim= True ) return X_exp / partition X = torch. rand( 2 , 5 )
result = softmax( X)
print ( result) '''
-------------------------------------------------------------------------定义模型
''' def net ( X) : return softmax( torch. mm( X. view( - 1 , num_inputs) , w) + b) '''
------------------------------------------------------------------------定义损失函数:交叉熵损失函数
'''
y_hat = torch. tensor( [ [ 0.1 , 0.3 , 0.6 ] , [ 0.3 , 0.2 , 0.5 ] ] )
y = torch. LongTensor( [ 0 , 2 ] )
y_hat. gather( 1 , y. view( - 1 , 1 ) ) def cross_entroy ( y_hat, y) : return - torch. log( y_hat. gather( 1 , y. view( - 1 , 1 ) ) ) tensor_0 = torch. arange( 3 , 12 ) . view( 3 , 3 )
index = torch. tensor( [ [ 2 , 1 , 0 ] ] ) . t( )
output = tensor_0. gather( 1 , index)
print ( output)
'''-------------------------------------------------------------------计算分类准确率
'''
def accuracy ( y_hat, y) : return ( y_hat. argmax( dim= 1 ) == y) . float ( ) . mean( ) . item( ) , ( y_hat. argmax( dim= 1 ) == y) . float ( ) print ( accuracy( y_hat, y) )
print ( d2l. evaluate_accuracy( test_iter, net) ) '''
-------------------------------------------------------------------------------------训练模型
'''
num_epochs, lr = 5 , 0.1
result = d2l. train_ch3( net, train_iter, test_iter, cross_entroy, num_epochs, batch_size, [ w, b] , lr) '''
-------------------------------------------------------------------------------------预测
'''
X, y = next ( iter ( test_iter) )
true_labels = d2l. get_fashion_mnist_labels( y. numpy( ) )
pred_labels = d2l. get_fashion_mnist_labels( net( X) . argmax( dim= 1 ) . numpy( ) )
titles = [ true + '\n' + pred for true, pred in zip ( true_labels, pred_labels) ]
d2l. show_fashion_mnist( X[ 0 : 9 ] , titles[ 0 : 9 ] )