yolov8的目标检测、实例分割、关节点估计的原理解析

1 YOLO时间线

这里简单列下yolo的发展时间线,对每个版本的提出有个时间概念。
在这里插入图片描述

2 yolov8 的简介

工程链接:https://github.com/ultralytics/ultralytics


2.1 yolov8的特点
  1. 采用了anchor free方式,去除了先验设置可能不佳带来的影响
  2. 借鉴Generalized Focal Loss,使用任务解耦,分别学习box,class。并将box边框的学习,从回归的形式更换成交叉熵的形式
  3. 增加了实例分割的功能,该模块借鉴了 YOLACT 的思想

2.2 yolov8 的相关参数

在这里插入图片描述
以上为官方视图:

  1. YOLOv8 相比 YOLOv5,mAP提升较多
  2. 左图可得: N/S/M 模型相应的参数量和 FLOPs 都增加了不少
  3. 右图可得:相比 YOLOV5,YOLOv8 大部分模型推理速度变慢


其中目标检测模型的相关参数如下图,更多的看查阅工github的官方工程:
在这里插入图片描述
以下章节分别对yolov8的目标检测、实例分割、关键点估计、目标跟踪进行介绍

3 yolov8 目标检测


3.1 网络结构

在这里插入图片描述

  • 【backbone】C2f、SPPF、Conv_BN_SiLU(strides=2,用于下采样)
  • 【neck】FPN(特征金字塔网络)、PAN(路径聚合网络)
  • 【head】Conv_BN_SiLU的堆叠分别输出:box、cls

YOLOV5 VS YOLOV8
在这里插入图片描述

  • 【backbone】
    第一个Conv的kernel:yolov5的 6*6 --> yolov8的 3*3
    C3模块替换了C2f,其数量从yolov5的 3-6-9-3,变成了yolov8的 3-6-6-3
  • 【neck】
    yolov8中 FPN中去除第一个的卷积;
    yolov8中的N/S、M、L/X 三组网络中最后的C2f输出通道不同,分别为1024,768,512。
  • 【head】
    yolov5中单个Conv_BN_SiLU,同时输出三个信息:obj、cls、box
    yolov8中使用Conv_BN_SiLU的堆叠,并分支输出两个信息:box、cls。
3.1.1 SiLU的激活函数

这里说下激活函数SiLU的激活函数
silu ( x ) = x ∗ σ ( x ) , where  σ ( x )  is the logistic sigmoid. \text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}silu(x)=xσ(x),where σ(x) is the logistic sigmoid.在这里插入图片描述

3.1.2 C3 & C2f

C2f相较于C3,有更多的跳层连接,与更多的特征的concat,梯度流更丰富。有助于更为丰富的特征的融合和提取在这里插入图片描述

3.1.3 SPP & SPPF 空间金字塔池化
  1. 上图是SPPNET原论文中提出的:提取并融合更多尺度的特征,使用fc_layer的同时并能够适应不同尺寸的输入
    在这里插入图片描述
  2. 下左图是YOLOV5、YOLOV8中使用的SPP:继承了原SPP的提取更多尺度的特征,但结构上已更新
  3. 下右图是fast SPP,对SPP进行了改进,减小参数的、增加运算速度,但不改变计算结果
    在这里插入图片描述
3.1.4 head

yolov5的head 的每层中分别为一个分支,同时预测3个内容:检测框质量(1 是否为目标 ∗ i o u p r e d , l a b e l 1_{是否为目标}*iou_{pred,label}1是否为目标​∗ioupred,label​)、类别的onehot、box的xywh。
与yolov5不同,yolov8的目标检测解耦了目标框和类别的预测,每层有两个分支,分别预测:类别的o n e h o t ∗ i o u p r e d , l a b e l onehot*iou_{pred,label}onehotioupred,label​、box的xywh。
在这里插入图片描述


3.2 目标检测的head输出

yolov8 的目标检测头,采用了Generalized Focal Loss,详细的内容可以看链接中的论文阅读,这里说明下关键点

3.2.1 定位质量与类别
  • 已有工作问题:训练和测试之间的差距,并可能会降低检测性能
    在这里插入图片描述
  • GFL工作解决:分类IoU联合表示
    分类onehot向量的标签 在真实类别位置上的是其相应的定位质量(预测box与标签box的iou)。也就是:类别的o n e h o t ∗ i o u p r e d , l a b e l onehot*iou_{pred,label}onehotioupred,label​。
    训练时和测试时使用相同的规则,它消除了训练-测试的不一致性,并使定位质量和分类之间具有最强的相关性。
    在这里插入图片描述
  • 举例子:
    左边为已有工作,右边为GFL,针对分类项目可称为QFL在这里插入图片描述
3.2.1 box的预测

在这里插入图片描述

  • 已有工作:
    边界框表示是唯一确定的位置,为一个简单的狄拉克分布,并采用回归方式进行训练。
    问题:但是,它没有考虑到数据集的模糊性和不确定性。如下图中的边界不清晰,因此真实标签(白色框)有时不可信,狄拉克分布无法很好的表示这些问题。
  • GFL工作:
    对于边界框表示,直接学习box位置上的离散概率分布,而不引入任何其他更强的先验(比如统计出来的anchor)。因此,我们可以获得更可靠和准确的边界框估计,同时了解它们的各种潜在分布。
    给定标签y的范围为y 0 ≤ y ≤ y n , n ∈ N + y_0≤y≤y_n,n∈N^+y0​≤yyn​,nN+,我们可以从模型中得到估计值 y ^ \hat{y}y^​, 也满足y 0 ≤ y ^ ≤ y n y_0≤\hat{y}≤y_ny0​≤y^​≤yn​:y ^ = ∫ − ∞ + ∞ P ( x ) x d x = ∫ y 0 y n P ( x ) x d x \hat{y}=\int_{-\infty }^{+\infty }P(x)xdx=\int_{y_0}^{y_n}P(x)xdxy^​=∫−∞+∞​P(x)xdx=∫y0​yn​​P(x)xdx为了与卷积神经网络保持一致,我们将连续域上的积分转换为离散表示,从离散范围[y0,yn]到一个集合{ y 0 , y 1 , . . . , y i , y i + 1 . . . , y n − 1 , y n } \{y0,y1,...,y_i,y_{i+1}...,y_{n−1},y_n\}{y0,y1,...,yi​,yi+1​...,yn−1​,yn​},其间隔∆=1。因此,给定离散分布性质∑ i = 0 n P ( y i ) = 1 \sum_{i=0}^{n}P(y_i)=1∑i=0nP(yi​)=1,估计的回归值y ^ \hat{y}y^​可以表示为:y ^ = ∑ i = 0 n P ( y i ) y i \hat{y}=\sum_{i=0}^{n}P(y_i)y_iy^​=i=0∑nP(yi​)yi
    尝试多种分布,最终发现下图第三种效果最好
    在这里插入图片描述
  • 举例子:
    左边为已有工作,右边为GFL,针对分类项目可称为DFL
    在这里插入图片描述
  • 算法具体实现:
    主要的公式为:∑ i = 0 n P ( y i ) = 1 \sum_{i=0}^{n}P(y_i)=1∑i=0nP(yi​)=1、y ^ = ∑ i = 0 n P ( y i ) y i \hat{y}=\sum_{i=0}^{n}P(y_i)y_iy^​=∑i=0nP(yi​)yi​。然后我们仅使用边界的浮点型位置,使用相邻的两个整数表达。

    假设第三个输出层的尺寸上的标签(6.25, 4.75, 18.375, 12.875),此时框的中心设为(11,9),左边框距离anchor为5.75= 11-6.25。则用长度为16的向量表示该距离d l d_ldl​:[0,0,0,0,0.25, 0.75,0,0,0,0, 0,0,0,0,0, 0]。该向量满足内容为:∑ i n d e x ∗ v a l u e = 5.75 \sum index*value=5.75∑indexvalue=5.75,∑ v a l u e = 1 \sum value=1∑value=1。

在这里插入图片描述
在这里插入图片描述
长度为16的向量最大可表达像素距离为15,那么这种表达方式,像素级最大可表达30*30的框。当模型共有5层,在第三个输出层是下采样了32倍,则30*30的框,在原尺寸上的大小为960*960。
所以只要网络输入尺寸<= 960,用四个长度为16的向量来表示框的四个边距离base点的距离,都可正确表达。若图片>960,理论上就需要增加向量的长度,但实际情况会现将图片先进行切割,然后多次预测,结果再转换到原图尺寸上。


3.3 正样本分配

yolov5中的正样本分配 是在训练之前已经完全确定了。
yolov8 中的正样本分配 TaskAlignedAssigner,属于动态分配,会根据当前网络输出的信息动态匹配 需要监督的标签。

  1. 计算 在每层中标签box内的每个grid ceil上预测的box,与标签box的iou;计算对齐衡量指标(匹配得分)。a l i g n _ m e t r i c = s α ∗ u β align\_metric =s^{\alpha }*u^{\beta}align_metric=sαuβ其中 s 和 u 分别表示分类得分和IoU,α 和 β 是权重系数用来控制两个任务对匹配得分的影响大小
  2. 获取标签box内top10的 align_metric 的位置的mask,如图2。
  3. 当一个gridceil预测出的box 同时与多个真实框匹配上,则保留ciou值最大的真实框。如图3。
  4. 得到 target_bboxes, target_scores, fg_mask。
    在这里插入图片描述

3.4 损失函数
  • 分类的gt_class --> target_class
    target_class的转换(分类IoU联合表示):分类的onehot * iou(pred_box, label_box)。pred_class为长度为分类数量的向量。
    则分类IoU联合表示的损失函数:sigmoid交叉熵。在代码中为:nn.BCEWithLogitsLoss

            self.bce = nn.BCEWithLogitsLoss(reduction='none')loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE
    

    这里补充下在pytorch中的损失函数的一些api

    nn接口function接口
    nn.NLLLossF.nll_loss
    nn.BCELossF.binary_cross_entropy
    nn.BCEWithLogitsLossF.binary_cross_entropy_with_logits
    nn.CrossEntropyLoss = softmax + log + NLLlossF.cross_entropy

    我们使用ℓ ( x , y ) \ell(x,y)ℓ(x,y)来表示损失函数,则有ℓ ( x , y ) = L = { l 1 , … , l N } ⊤ \ell(x, y) = L = \{l_1,\dots,l_N\}^\topℓ(x,y)=L={l1​,…,lN​}⊤其中【N】batch、【x】input(在使用中一般为网络输出的内容)、【y】target、【x n , y n x_{n,y_n}xn,yn​​】表示对应target那一类的概率。

    • nn.NLLLoss()
      l n = − w y n x n , y n l_n = - w_{y_n} x_{n,y_n}ln​=−wyn​​xn,yn​​
    • nn.BCELoss中:
      l n = − w n [ y n ⋅ log ⁡ ( x n ) + ( 1 − y n ) ⋅ log ⁡ ( 1 − x n ) ] l_n = - w_n \left[ y_n \cdot \log (x_n) + (1 - y_n) \cdot \log (1 - x_n) \right]ln​=−wn​[yn​⋅log(xn​)+(1−yn​)⋅log(1−xn​)]
    • nn.BCEWithLogitsLoss = sigmoid + BCELoss
      l n = − w n [ y n ⋅ log ⁡ 1 1 + exp ⁡ ( − x n ) + ( 1 − y n ) ⋅ log ⁡ ( 1 − 1 1 + exp ⁡ ( − x n ) ) ] l_n = - w_n \left[ y_n \cdot \log \frac{1}{1+\exp(-x_n)} + (1 - y_n) \cdot \log (1 - \frac{1}{1+\exp(-x_n)}) \right]ln​=−wn​[yn​⋅log1+exp(−xn​)1​+(1−yn​)⋅log(1−1+exp(−xn​)1​)]
    • CrossEntropyLoss = softmax + log + NLLloss 
      l n = − ∑ c = 1 C w c log ⁡ exp ⁡ ( x n , c ) exp ⁡ ( ∑ i = 1 C x n , i ) y n , c l_n = - \sum_{c=1}^C w_c \log \frac{\exp(x_{n,c})}{\exp(\sum_{i=1}^C x_{n,i})} y_{n,c}ln​=−c=1∑Cwc​logexp(∑i=1Cxn,i​)exp(xn,c​)​yn,c
      N L L ( l o g ( s o f t m a x ( i n p u t ) ) , t a r g e t ) = − Σ i = 1 n O n e H o t ( t a r g e t ) i × l o g ( s o f t m a x ( i n p u t ) i ) \mathbf{NLL(log(softmax(input)),target)= -\Sigma_{i=1}^n OneHot(target)_i\times log(softmax(input)_i)}NLL(log(softmax(input)),target)=−Σi=1nOneHot(target)i​×log(softmax(input)i​)
      ( i n p u t ∈ R m × n ) (input∈Rm×n)(inputRm×n)
  • box 的 gt_class --> target_class

    • CIOU:以往box检测框的损失函数都会使用的一项。
      考虑三种几何参数:重叠面积、中心点距离、长宽比。CIoU就是在DIoU的基础上增加了检测框尺度的loss,增加了长和宽的loss,这样预测框就会更加的符合真实框。
    • Distribution Focal Loss (DFL):使用向量表达边界与基准点的距离,然后结合softmax交叉熵计算得DFL项的loss
      将边界距离基准点的距离记为y,则可将基准点转换为(tl, tr),两者对应的权重为(wl, wr)。y.shape = tl.shape = tr.shape= [batch, n, 4]。
      tl.view(-1).shape = tr.view(-1).shape = [batc*n*4](假设左边界距离y=5.6,则 t l = 5 tl=5tl=5,t r = 6 tr=6tr=6,t l = 0.4 tl=0.4tl=0.4,w r = 0.6 wr=0.6wr=0.6)
      此时网络输出的边界为pred_dist,pred_dist.shape=[batc*n*4,16]。则损失函数如下,:
      loss =  (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl +F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True)
      

4 yolov8 实例分割

4.1 网络结构

从工程实现中可以看到,分割的网络结构与目标检测的网络结构,主干网络、neck模块都是完全一致的,只有在任务侧 有所差异。
在这里插入图片描述
在这里插入图片描述

分割的head(coef) 与目标检测的head是基本一致的,仅最后一层的输出维度有所差异。
在这里插入图片描述

阅读源码并绘制网络结构图如上,可发现 在目标检测的head模块基础上,额外添加了segment的分支:掩码系数分支、原型分支。接下来会介绍该分割分支的具体使用。


3.2 分割的head输出

该部分内容借鉴了论文 YOLACT Real-time Instance Segmentation。

  • 【Proto的输出】
    网络会在第一个输出层中,输出一组mask原型,其数量工程中设置为32。不同mask为网络学习到不同的掩码信息,值得注意的是单张mask并不意味着mask中只有一个目标的mask。将mask可视化如下图,第一张mask仅人体,第二张为人体+羽毛球拍,第三张为另一张人体mask,第四张为球拍。
    在这里插入图片描述
    需将所有的mask线性叠加然后得到当前目标的最终掩码信息。下图当中示意了默认系数为1的线性叠加,但实际该掩码系数不可能同时为1。则安排了神经网络预测该系数,也就是mask_coef分支。
    在这里插入图片描述
  • 【mask_coef】
    网络每个gridceil都有3个输出信息:cls + box + mask_coef。对前两者进行解析可得到,有效的gridceil预测出了目标的类别 和 目标的box,此时可以很容易获取该gridceil中的目标的mask_coef,维度为32,刚好与Proto输出的channel维度32相一致。
  • 【gridceil中目标的mask的计算】
    1 通过mask_coef 和 Proto的线性叠加求出mask,其中 n 为 第n个检出结果:m a s k n = ∑ i = 0 32 m a s k _ c o e f i ∗ P r o t o i mask_n = \sum_{i=0}^{32}mask\_coef_{i}*Proto_{i}maskn​=i=0∑32​mask_coefi​∗Protoi​2 仅保留该gridceil检测出的box内的mask,然后再对mask框内的mask的每个像素进行阈值过滤(工程中阈值设为0.5),即得到该目标的最终的mask。
    在这里插入图片描述

3.3 mask的损失函数

网络的输出经过 3.2 章节的处理后,得到解析后的mask信息

  • 训练时,mask与标签进行计算损失函数。也就是并不会对 Proto 和 mask_coef 直接进行监督;仅对每个box内有效的处理后的mask做损失函数的计算。
  • 预测时,mask通过阈值处理为2值图,像素=0为背景,像素=1为目标。不包含类别信息,类别信息由head_cls分支的输出提供。

训练时候的损失函数为

   def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):"""Mask loss for one image."""## gt_mask: mask的标签## pred: 预测的mask_coef## proto:预测的32个原型mask## xyxy:目标检测框标签,用于选中有效区域的mask## area:目标检测框标签的面积,计算了box内的mask损失,要除以面积以为了平衡大小目标对最终损失的影响。pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:])  # (n, 32) @ (32,80,80) -> (n,80,80)loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()

5 关节点估计

有待补充完善。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/633251.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PHP Fatal error: Unparenthesized `a ? b : c ? d : e` is not supported.

这个错误是关于三元运算符的错误 这个错误在php8.0以下的版本好像是没问题呢 PHP Fatal error: Unparenthesized a ? b : c ? d : e is not supported. Use either (a ? b : c) ? d : e or a ? b : (c ? d : e) in /cangku/app/common.php on line 57 这个问题是 程…

一站式获取 PieCloudDB Database 产品、社区及数据库行业全动态

第一部分 PieCloudDB Database 最新动态 PieCloudDB 推出社区版全新版本 11月14日&#xff0c;PieCloudDB 再度升级&#xff0c;推出社区版全新版本&#xff0c;免费面向用户开放下载&#xff0c;新版本将支持单机和多节点部署两种方式。欢迎试用&#xff01; 下载链接&…

linux docker-compose安装失败解决

1.去github下载到本地 https://github.com/docker/compose/releases/ 2.上传到linux 服务器 mv dokcer-compose-linux-x86_64 /usr/loacal/bin/docker-compose 3.给权限 chmod x /usr/local/bin/docker-compose 4.查看是否安装成功 docker-compose -version 5.卸载 …

第14章_集合与数据结构拓展练习(前序、中序、后序遍历,线性结构,单向链表构建,单向链表及其反转,字符串压缩)

文章目录 第14章_集合与数据结构拓展练习选择填空题1、前序、中序、后序遍历2、线性结构3、其它 编程题4、单向链表构建5、单向链表及其反转6、字符串压缩 第14章_集合与数据结构拓展练习 选择填空题 1、前序、中序、后序遍历 分析&#xff1a; 完全二叉树&#xff1a; 叶结点…

Flink TaskManager内存管理机制介绍与调优总结

内存模型 因为 TaskManager 是负责执行用户代码的角色&#xff0c;一般配置 TaskManager 内存的情况会比较多&#xff0c;所以本文当作重点讲解。根据实际需求为 TaskManager 配置内存将有助于减少 Flink 的资源占用&#xff0c;增强作业运行的稳定性。 TaskManager 内…

深度解析 Compose 的 Modifier 原理 -- Modifier.layout()、LayoutModifier

"Jetpack Compose - - Modifier 原理系列文章 " &#x1f4d1; 《 深度解析 Compose 的 Modifier 原理 - - Modifier、CombinedModifier 》 &#x1f4d1; 《 深度解析 Compose 的 Modifier 原理 - - Modifier.composed()、ComposedModifier 》 &#x1f4d1; 《 深度…

【Debian】非图形界面Debian10.0.0安装xfce和lxde桌面

一、安装 1. Debian10.0.0安装xfce桌面 sudo apt update sudo apt install xfce4 startxfce4 2. Debian10.0.0安装lxde桌面 sudo apt-get install lxde安装后重启电脑。 二、说明 XFCE、LXDE 和 GNOME 是三个流行的桌面环境&#xff0c;它们都是为类 Unix 操作系统设计…

目标检测--02(Two Stage目标检测算法1)

Two Stage目标检测算法 R-CNN R-CNN有哪些创新点&#xff1f; 使用CNN&#xff08;ConvNet&#xff09;对 region proposals 计算 feature vectors。从经验驱动特征&#xff08;SIFT、HOG&#xff09;到数据驱动特征&#xff08;CNN feature map&#xff09;&#xff0c;提高特…

Git一台电脑 配置多个账号

Git一台电脑 配置多个账号 Git一台电脑 配置多个账号 常用的Git版本管理有 gitee github gitlab codeup &#xff0c;每个都有独立账号&#xff0c;经常需要在一个电脑上向多个代码仓提交后者更新代码&#xff0c;本文以ssh 方式为例配置 1 对应账号 公私钥生成 建议&#…

「sdkman」「nvm」Linux:基于sdkman安装多版本Java;安装maven;基于nvm安装多版本nodejs;安装yarn

1. 基于sdkman 安装多版本Java Linux环境下管理多版本java可以使用sdkman,官网: https://sdkman.io/ 需要注意sdkman 依赖 zip和unzip 命令,记得提前下载再下载sdkman 安装命令 按官网走很简单: curl -s “https://get.sdkman.io” | bash source “$HOME/.sdkman/bin/sdkm…

ARM64汇编01 - 环境搭建

arm官方手册 由于市面上几乎没有arm相关书籍&#xff0c;所以推荐看官方文档。虽然是英文的&#xff0c;看不下去也要硬看&#xff0c;毕竟搞这方面的还是得有啃英文文档/书籍的能力。 另外&#xff0c;再推荐一个翻译网站&#xff1a;https://www.deepl.com/zh/translator …

架设一台NFS服务器,并按照以下要求配置

1、开放/nfs/shared目录&#xff0c;供所有用户查询资料 2、开放/nfs/upload目录&#xff0c;为192.168.xxx.0/24网段主机可以上传目录&#xff0c; 并将所有用户及所属的组映射为nfs-upload,其UID和GID均为210 3、将/home/tom目录仅共享给192.168.xxx.xxx这台主机&#xff0c;…

大模型微调学习记录-基于GLM-130B

0. 前序背景 论文&#xff1a;GLM-130B: AN OPEN BILINGUAL PRE-TRAINED MODEL GLM2的微调教程 目前GLM2-130B优于或相当GPT-3-175B的性能。 选择130B&#xff08;1300亿参数&#xff09;是从硬件性能考虑&#xff0c;可以在单张A100&#xff08;40Gx8&#xff09;上进行推理…

jvm -Djava.library.path 无法打开共享对象文件:

项目代码修改 java -jar -Xms1024m -Xmx1024m -Dloader.path/data/encrypt/lib -Djava.library.path/data/encrypt/libVtExtAPI.so server-1.0.0-SNAPSHOT.jar 重新启动

VScode远程开发

VScode远程开发 在SSH远程连接一文中&#xff0c;我么介绍了如何使用ssh远程连接Jetson nano端&#xff0c;但是也存在诸多不便&#xff0c;比如:编辑文件内容时&#xff0c;需要使用vi编辑器&#xff0c;且在一个终端内&#xff0c;无法同时编辑多个文件。本节将介绍一较为实用…

基于ORB算法的图像匹配

基础理论 2006年Rosten和Drummond提出一种使用决策树学习方法加速的角点检测算法&#xff0c;即FAST算法&#xff0c;该算法认为若某点像素值与其周围某邻域内一定数量的点的像素值相差较大&#xff0c;则该像素可能是角点。 其计算步骤如下&#xff1a; 1&#xff09;基于F…

VMware Workstation Pro虚拟机搭建

下载链接&#xff1a;Download VMware Workstation Pro 点击上方下载&#xff0c;安装过程很简单&#xff0c;我再图片里面说明 等待安装中。。。。。是不是再考虑怎样激活&#xff0c;我都给你想好了&#xff0c;在下面这个链接&#xff0c;点赞收藏拿走不谢。 https://downl…

Jupyter-Notebook无法创建ipynb文件

文章目录 概述排查问题恢复方法参考资料 概述 用户反馈在 Notebook 上无法创建 ipynb 文件&#xff0c;并且会返回以下的错误。 报错的信息是: Unexpected error while saving file: Untitled5.ipynb attempt to write a readonly database 排查问题 这个是一个比较新的问…

物联网孢子捕捉分析仪在农田起到什么作用

TH-BZ03随着科技的飞速发展&#xff0c;物联网技术在农业领域的应用越来越广泛。其中&#xff0c;物联网孢子捕捉分析仪作为一种先进的设备&#xff0c;在农田中发挥着不可或缺的作用。本文将详细介绍物联网孢子捕捉分析仪在农田中的作用。 一、实时监测与预警 物联网孢子捕捉分…

【webrtc】GCC 7: call模块创建的ReceiveSideCongestionController

webrtc 代码学习&#xff08;三十二&#xff09; video RTT 作用笔记 从call模块说起 call模块创建的时候&#xff0c;会创建 src\call\call.h 线程&#xff1a; 统计 const std::unique_ptr<CallStats> call_stats_;SendDelayStats &#xff1a; 发送延迟统计 const…