Python数据分析的第三方库

ython作为一种简单易学、功能强大的编程语言,逐渐成为数据分析领域的首选工具。在Python数据分析中,有许多优秀的第三方库可以帮助我们进行数据处理、可视化和建模。

常用第三方库:

NumPy:提供了高性能的多维数组对象和用于数组操作的工具,是数据分析的基础库。

pandas:提供了用于数据处理和分析的数据结构和函数,可以处理结构化数据,如表格和时间序列数据。

Matplotlib:用于绘制各种类型的图表和可视化,包括线图、散点图、柱状图等。

Seaborn:基于 Matplotlib 的数据可视化库,提供了更高级的统计图表和绘图样式。

Scikit-learn:用于机器学习和数据挖掘的库,包括各种分类、回归、聚类和降维算法。

SciPy:用于科学计算的库,包括数值积分、优化、插值等功能。

Statsmodels:用于统计建模和计量经济学的库,提供了各种统计模型和方法。

NetworkX:用于复杂网络分析的库,支持图论算法和网络可视化。

BeautifulSoup:用于解析和提取网页数据的库,常用于网页爬虫和数据采集。

TensorFlow:用于机器学习和深度学习的库,支持构建和训练各种神经网络模型。

以上是一些常用的第三方库,用于Python数据分析的各个方面,可以根据具体需求选择合适的库进行使用。

这些常用的第三方库在Python数据分析中发挥了重要的作用。首先,NumPy是数据分析的基础库,提供了高性能的多维数组对象和丰富的数组操作工具,使得数据的处理更加高效和方便。pandas则是用于数据处理和分析的重要工具,它提供了强大的数据结构和函数,可以处理结构化数据,如表格和时间序列数据。通过pandas,可以进行数据清洗、数据聚合和数据转换等操作,为后续的分析提供了良好的基础。

在数据可视化方面,Matplotlib和Seaborn是常用的库。Matplotlib提供了丰富的绘图功能,可以绘制各种类型的图表,如线图、散点图、柱状图等,为数据的可视化提供了强大的支持。而Seaborn是基于Matplotlib的数据可视化库,提供了更高级的统计图表和绘图样式,可以使得数据的可视化更加美观和直观。

对于机器学习和数据挖掘任务,Scikit-learn是常用的库之一。它提供了各种分类、回归、聚类和降维算法,以及模型选择、特征提取和评估等功能,为机器学习任务提供了全面的支持。同时,Statsmodels也是一款重要的库,专注于统计建模和计量经济学,提供了各种统计模型和方法,可以进行统计分析和经济学研究。

此外,SciPy是一款用于科学计算的库,提供了数值积分、优化、插值等功能,为数据分析提供了更加丰富和广泛的科学计算工具。NetworkX是用于复杂网络分析的库,支持图论算法和网络可视化,可以用于研究和分析各种类型的网络结构。而BeautifulSoup则是用于解析和提取网页数据的库,常用于网页爬虫和数据采集。最后,TensorFlow是一款用于机器学习和深度学习的库,支持构建和训练各种神经网络模型,为深度学习任务提供了强大的支持。

综上所述,这些常用的第三方库提供了丰富的功能和工具,能够满足Python数据分析的各个方面的需求。通过合理选择和使用这些库,可以更加高效和便捷地进行数据分析工作。

以下是以上每个库的使用事例:

  1. NumPy:
import numpy as np# 创建一个数组
arr = np.array([1, 2, 3, 4, 5])# 计算数组的平均值
mean = np.mean(arr)# 计算数组的标准差
std = np.std(arr)# 计算数组的累积和
cumsum = np.cumsum(arr)
  1. pandas:
import pandas as pd# 读取csv文件为DataFrame
df = pd.read_csv('data.csv')# 查看DataFrame的前几行
head = df.head()# 对DataFrame进行排序
df_sorted = df.sort_values(by='column_name')# 进行数据聚合
aggregated = df.groupby('column_name').sum()
  1. Matplotlib:
import matplotlib.pyplot as plt# 绘制折线图
x = [1, 2, 3, 4, 5]
y = [10, 20, 15, 25, 30]
plt.plot(x, y)# 绘制散点图
plt.scatter(x, y)# 绘制柱状图
plt.bar(x, y)# 添加标题和标签
plt.title('Title')
plt.xlabel('X Label')
plt.ylabel('Y Label')# 显示图表
plt.show()
  1. Seaborn:
import seaborn as sns
import matplotlib.pyplot as plt# 绘制带有趋势线的散点图
sns.regplot(x='x', y='y', data=df)# 绘制箱线图
sns.boxplot(x='group', y='value', data=df)# 绘制直方图和核密度估计
sns.distplot(df['column'], bins=10, kde=True)# 设置样式和调整图表布局
sns.set(style='darkgrid')
plt.tight_layout()# 显示图表
plt.show()
  1. Scikit-learn:
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 创建线性回归模型
model = LinearRegression()# 在训练集上拟合模型
model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = model.predict(X_test)# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
  1. SciPy:
from scipy.optimize import minimize
from scipy.interpolate import interp1d
from scipy.integrate import quad# 最小化函数
result = minimize(f, x0)# 插值函数
f_interp = interp1d(x, y, kind='linear')
y_interp = f_interp(x_new)# 数值积分
result, error = quad(f, a, b)
  1. Statsmodels:
import statsmodels.api as sm# 创建线性回归模型
model = sm.OLS(y, X)# 在训练集上拟合模型
results = model.fit()# 打印模型摘要
print(results.summary())# 进行假设检验
hypothesis = 'x = 0'
t_test = results.t_test(hypothesis)# 进行预测
y_pred = results.predict(X_new)
  1. NetworkX:
import networkx as nx
import matplotlib.pyplot as plt# 创建图对象
G = nx.Graph()# 添加节点和边
G.add_nodes_from([1, 2, 3, 4])
G.add_edges_from([(1, 2), (2, 3), (3, 4), (4, 1)])# 绘制图形
nx.draw(G, with_labels=True)# 计算图的中心性指标
centrality = nx.betweenness_centrality(G)# 计算最短路径
shortest_path = nx.shortest_path(G, source=1, target=4)# 显示图形
plt.show()
  1. BeautifulSoup:
from bs4 import BeautifulSoup
import requests# 发送HTTP请求,获取网页内容
response = requests.get('https://www.example.com')# 使用BeautifulSoup解析网页内容
soup = BeautifulSoup(response.content, 'html.parser')# 提取网页中的文本内容
text = soup.get_text()# 提取指定标签的内容
links = soup.find_all('a')
for link in links:print(link.get('href'))
  1. TensorFlow:
import tensorflow as tf# 创建图和会话
graph = tf.Graph()
session = tf.Session(graph=graph)# 定义变量和操作
x = tf.constant(2)
y = tf.constant(3)
z = tf.add(x, y)# 运行操作
result = session.run(z)
print(result)# 定义神经网络模型
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(10, activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val))

这些使用事例展示了以上每个库的基本用法和功能,可以根据具体需求进行相应的调用和使用。

实际案例:

假设我们有一个电商网站的销售数据,想要对销售情况进行分析和预测。

首先,我们可以使用pandas读取销售数据的CSV文件为一个DataFrame,并进行数据清洗和整理,以便后续分析。

import pandas as pd# 读取销售数据
df = pd.read_csv('sales_data.csv')# 查看数据前几行
print(df.head())# 对数据进行清洗和整理
# ...

接下来,我们可以使用NumPy计算销售数据的一些统计指标,比如平均值、标准差等。

import numpy as np# 计算销售额的平均值和标准差
sales = df['sales'].values
mean_sales = np.mean(sales)
std_sales = np.std(sales)# 计算销售额的累积和
cumulative_sales = np.cumsum(sales)

然后,我们可以使用Matplotlib和Seaborn绘制销售数据的可视化图表,比如折线图、柱状图等。

import matplotlib.pyplot as plt
import seaborn as sns# 绘制销售额的折线图
dates = df['date'].values
plt.plot(dates, sales)
plt.xlabel('Date')
plt.ylabel('Sales')
plt.title('Sales Trend')
plt.show()# 绘制销售额的柱状图
categories = df['category'].values
sns.barplot(x=categories, y=sales)
plt.xlabel('Category')
plt.ylabel('Sales')
plt.title('Sales by Category')
plt.show()

接着,我们可以使用Scikit-learn进行销售数据的预测建模,比如线性回归模型。

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 划分训练集和测试集
X = df[['feature1', 'feature2', 'feature3']].values
y = df['sales'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 创建线性回归模型
model = LinearRegression()# 在训练集上拟合模型
model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = model.predict(X_test)# 计算均方误差
mse = mean_squared_error(y_test, y_pred)

最后,我们可以使用Statsmodels进行销售数据的统计分析,比如回归分析和假设检验。

import statsmodels.api as sm# 创建线性回归模型
model = sm.OLS(y, X)# 在训练集上拟合模型
results = model.fit()# 打印模型摘要
print(results.summary())# 进行假设检验
hypothesis = 'feature1 = 0'
t_test = results.t_test(hypothesis)

这个实际案例结合了以上的库,展示了如何使用它们进行销售数据的分析和预测。通过对销售数据的统计分析和建模,我们可以获得对销售情况的洞察,并基于模型进行预测和决策。

综述:

Python数据分析的第三方库提供了丰富的功能和工具,可以方便地进行数据处理、可视化和建模。其中,Pandas提供了DataFrame数据结构,可以轻松进行数据清洗和整理;NumPy提供了高效的数组和矩阵操作,支持快速的数值计算;Matplotlib和Seaborn提供了强大的绘图功能,可以创建各种类型的图表;Scikit-learn是机器学习库,支持多种机器学习算法和工具;Statsmodels提供了统计建模和推断的功能。这些库的结合使用,可以帮助数据分析人员更快速、高效地完成数据分析任务,提供准确的分析结果和可视化展示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/63319.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

unity3d:功能验证,收集开源项目的工程合集

unity3d功能验证,和收集开源项目的工程合集 目录持续更新地址 【腾讯文档】UnityForTest目录 https://docs.qq.com/doc/DWm9HSkVhTGdyUUVo 源码 https://github.com/luoyikun/UnityForTest 动画 创建骨骼动画 BoneAnimation场景 代码创建Mesh,骨骼…

使用 KeyValueDiffers 检测Angular 对象的变化

使用 KeyValueDiffers 检测Angular 对象的变化 ngDoCheck钩子 ngDoCheck 是 Angular 生命周期钩子之一。它允许组件在 Angular 检测到变化时执行自定义的变化检测逻辑。 当任何组件或指令的输入属性发生变化、在组件内部发生了变更检测周期或者当主动触发变更检测策略&#…

Flask项目请求图片资源返回403错误

问题 解决 在图片url前缀前加 "https://images.weserv.nl/?url" 参考 如何解决访问外部图片返回 403 Forbidden 错误 - 知乎 vue中请求接口会自动带上本地ip_vite打包后请求地址为什么带本地地址_夜月晓晓的博客-CSDN博客

二轮平衡小车1:舵机与电机的基本控制

今日开始使用STM32F103 C8T6尝试做一个二轮平衡小车,从电机舵机控制开始,小车也是在三个小时的自主设计下框架结构与引脚安排都做好了。 本文主要贴代码,之前的文章都有原理,代码中相应初始化驱动部分也有注释~~ 文章提供源码&a…

CSS判断手机暗黑模式

手机有个功能到了晚上会自动变成深色也就是暗黑模式.这种情况下网页会自动变颜色.如果想自由控制暗黑模式下的html样式的话,可以用如下方式: media (prefers-color-scheme: dark) {/*html, body {*//*filter: invert(1) hue-rotate(180deg);*//*}*/.maill{margin-left: 0;marg…

【ES系列】(一)简介与安装

首发博客地址 首发博客地址[1] 系列文章地址[2] 教学视频[3] 为什么要学习 ES? 强大的全文搜索和检索功能:Elasticsearch 是一个开源的分布式搜索和分析引擎,使用倒排索引和分布式计算等技术,提供了强大的全文搜索和检索功能。学习 ES 可以掌…

【FreeRTOS】互斥量的使用与逐步实现

在FreeRTOS中,互斥量是一种用于保护共享资源的同步机制。它通过二进制信号量的方式,确保在任意时刻只有一个任务可以获取互斥量并访问共享资源,其他任务将被阻塞。使用互斥量的基本步骤包括创建互斥量、获取互斥量、访问共享资源和释放互斥量…

玩客云 线刷Armbian 搭配Alist 阿里云盘 Jellyfin NovaVideoPlayer搞电视墙

啰嗦的背景 喜欢看电影,买了个投影仪,是这一切折腾的开端。 投影仪虽然有当贝系统,但是想看的电影总是需要**电视会员,那我肯定是不用的。因为有爱腾优的会员,最开始都是使用手机投屏,当呗的投影仪好就好…

vue 基于element-plus el-button封装按钮组件

封装组件的原则是&#xff1a;组件只是数据流通的一个管道&#xff0c;不要糅合太多的逻辑在里面&#xff0c;是一个纯组件&#xff0c;还要根据自己项目的业务场景做具体的处理。 // MyButton.vue // 基于element-plus中el-button来封装按钮 <template><el-button c…

【Vue3 知识第二讲】Vue3新特性、vue-devtools 调试工具、脚手架搭建

文章目录 一、Vue3 新特性1.1 重写双向数据绑定1.1.1 Vue2 基于Object.defineProperty() 实现1.1.2 Vue3 基于Proxy 实现 1.2 优化 虚拟DOM1.3 Fragments1.4 Tree shaking1.5 Composition API 二、 vue-devtools 调试工具三、环境配置四、脚手架目录介绍五、SFC 语法规范解析附…

Android Studio 的github 工程克隆

上文介绍了Android Studio 里的"Git 建立和简单操作。本文介绍从github 上的工程fork 和clone到本地&#xff0c;然后学习和改进。 本文参考 https://learntodroid.com/how-to-use-git-and-github-in-android-studio/ 克隆clone Github 仓库&#xff1a; 先 Fork 你选择…

实战黑马苍穹外卖项目8.1-10.1

文章目录 软件开发的基本流程用户层网关层应用层数据层工具 数据库设计导入准备好的前端和后端工程基础工程代码分析完成员工功能完成菜品功能入门Redis实现店铺营业HttpClient微信小程序开发缓存Spring Cache实现地址功能用户下单实现订单推送状态apache对应的工具使用项目用到…

无涯教程-Flutter - 数据库

SQLite" class"css-1occaib">SQLite数据库是基于事实和标准SQL的嵌入式数据库引擎&#xff0c;它是小型且经过时间考验的数据库引擎&#xff0c;sqflite软件包提供了许多函数&#xff0c;可以有效地与SQLite数据库一起使用&#xff0c;它提供了操作SQLite数据…

ExpressLRS开源代码之框架结构

ExpressLRS开源代码之框架结构 1. 源由2. Arduino应用框架3. ExpressLRS应用框架4. 硬件设计框架4.1 单天线4.2 双天线单PA4.3 双天线双PA 5. 应用软件设计6. 参考资料 1. 源由 最近为了理解《ExpressLRS开源之基本调试数据含义》&#xff0c;做了一些源代码的研读。 概念、文…

基于costas环的载波同步系统matlab性能仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ............................................................................ I_Dataroun…

kubernetes进阶 (一) 环境搭建

我是基于一台centos7.6的腾讯云主机进行操作的&#xff0c;配置为4C8G&#xff0c;之前的文档自己试着搭建发现有问题了&#xff0c;这里重新整理下笔记&#xff0c;集群版本选择1.22.2&#xff08;一年前搭的&#xff09;用的还不错 清理环境 之前我的环境可能装过docker或者什…

Ansible学习笔记4

file模块&#xff1a; file模块用于对文件相关的操作&#xff08;创建、删除、属性修改、软链接等&#xff09;touch是创建。 [rootlocalhost ~]# ansible group1 -m file -a "path/tmp/111 statetouch" 192.168.17.105 | CHANGED > {"ansible_facts"…

[SpringBoot3]视图技术Thymeleaf

七、视图技术Thymeleaf Thymeleaf是一个表现层的模板引擎&#xff0c;一般被使用在Web环境中&#xff0c;它可以处理HTML、XML、JS等文档&#xff0c;简单来说&#xff0c;它可以将JSP作为Java Web应用的表现层&#xff0c;有能力展示与处理数据。这样&#xff0c;同一个模板文…

android 12 第三方apk系统签名

需求&#xff1a;客户有两个供应商&#xff0c;我们是其中之一&#xff0c;然后客户想将我们的apk 用 另一家供应商的系统签名&#xff0c;安装到另一家供应商的设备上&#xff0c;另一家供应商提供了系统签名文件 用之前的方法 &#xff08;platform.x509.pem platform.pk8客户…

1. 安装Zookeeper

​ 1.下载 点击下载Zookeeper 单机版安装 安装Zookeeper前需要先安装jdk上传安装包rz解压安装包:tar -zxvf apache-zookeeper-3.6.0-bin.tar.gz -C /opt/app/zookeeper zookeeper目录结构:a. bin: 放置运行脚本和工具脚本b. conf: zookeeper 默认读取配置的目录,里面会有…