[Linux 进程(五)] 程序地址空间深度剖析

在这里插入图片描述

文章目录

  • 1、前言
  • 2、什么是进程地址空间?
  • 3、进程地址空间的划分
  • 4、虚拟地址与物理地址的关系
  • 5、页表的作用
    • 扩展
  • 6、为什么要有地址空间?

1、前言

Linux学习路线比较线性,也比较长,因此一个完整的知识点学习就会分布在两篇文章中,没有连贯起来,订阅的朋友谅解一下,再次感谢订阅!
上一篇文章最后讲到了程序地址空间分布,大家可以先复习一下上一篇文章:程序地址空间的初认识
本片我们深度学习一下程序地址空间,虚拟地址与物理地址的关系,页表与物理地址的映射,写时拷贝的过程,我们带着这些问题开始我们今天新的学习!

2、什么是进程地址空间?

在学习地址空间前,我们要明确:C/C++看到的地址其实并不是真正的地址,它其实是 虚拟地址,真正的地址是物理地址。
我们通过一个故事来带大家更好的理解一下什么是地址空间:
有一个大富豪,他有10亿的资产,同时拥有四个私生子,这四个私生子互相不知道其他人的存在。
私生子1是学生,私生子2是一个社会青年,私生子3是律师,私生子4是企业家。一天富豪分别对四个私生子说:
对1说:你是咱家的大学生,好好学习,以后这10个亿都是你的。
对2说:……,以后这10个亿都是你的。
对3说:……,以后这10个亿都是你的。
对4说:……,以后这10个亿都是你的。
他们都各自以为自己有10个亿等着继承呢,于是他们断断续续的对父亲说:
1:……,有用,需要xxx钱(不过10亿的1/10)。父亲给了。
2:……,有用,需要xxx钱(不过10亿的1/10)。父亲给了。
3:……,有用,需要xxx钱(不过10亿的1/10)。父亲给了。
4:……,有用,需要xxx钱(不过10亿的1/10)。父亲给了。
在这里插入图片描述

操作系统对应富豪;
内存对应那真实的10个亿;
进程对应为私生子;
虚拟地址空间对应富豪对他们每个人画的10亿的饼。
总结:
地址空间其实并不是真实的,是操作系统给进程画的饼。

3、进程地址空间的划分

我们看一下地址空间的分布:
在这里插入图片描述
地址空间其实就是上面各个区域结合起来,这些区域的划分很简单,用begin与end两个变量一个指头,一个指尾,来限制范围即可。
根据以上的学习,我们不难得知:虽然地址空间是操作系统给进程画的的饼,但是进程多了这些地址空间我们也需要管理起来,要不然进程和对应的地址空间对应不上。说到管理就不得不提“先描述,再组织”。Linux中,这个进程/虚拟地址空间这个东西,叫做:

struct mm_struct
{long code_start; // 代码区开始long code_end; // 代码区结束long data_start; // 数据区开始long data_end; // 数据区结束long heap_start; // 堆区开始long heap_end; // 堆区结束long stack_start; // 栈区开始long stack_end; // 栈区结束... // 其他属性
}

进程地址空间mm_struct里面其实就是维护了一张链表,每个节点是一个结构体vm_area_struct,里面存的就是一个区域的开始和结束地址。

4、虚拟地址与物理地址的关系

我们来写一段代码探究一下地址:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>int g_val = 100;                                                                                                                
int main()                            
{                                     pid_t id = fork();                if(id == 0)                       {                                 // child                      int cnt = 5;                  while(1)                                                                                             {                                                                                                    printf("child, Pid: %d, Ppid: %d, g_val: %d, &g_val = %p\n", getpid(), getppid(), g_val, &g_val);sleep(1);                 if(cnt == 0)              {                                            g_val = 200;                             printf("child change g_val: 100->200\n");}                         cnt--;                    }                             }                                 else                              {// fatherwhile(1){printf("father, Pid: %d, Ppid: %d, g_val = %d, &g_val = %p\n", getpid(), getppid(), g_val, &g_val);sleep(1);}}return 0;
}

在这里插入图片描述
我们知道,在没有发生对数据的改写时,父子进程共用一份代码和数据,这里子进程对数据进行了修改,父子进程读到的值不同了,父子进程的全局变量地址怎么还是相同的???
问题:
父子进程对同一个地址进行读取,竟然读出了不同的值?
我们这就能得出之前的结论:我们C/C++看到的地址是虚拟地址。
有了上面的理解,我们再来谈谈虚拟地址和物理地址的关系:
在这里插入图片描述
经过虚拟地址的学习以及这张图,我们现在就可以解释,同一个地址的值不同。
当我们fork创建了子进程的时候,子进程与父进程共享一份代码和数据,此时子进程与父进程进程地址空间与页表是一份。
当子进程对值进行修改的时,操作系统将父进程的进程地址空间与页表拷贝一份给子进程。当写入时,产生写时拷贝,重新开一块物理地址存内容,并将子进程页表中物理地址修改即可,子进程的虚拟地址没有变。因此父子进程虚拟地址相同是表象,本质物理地址已经修改了。
在这里插入图片描述

5、页表的作用

页表的结构中还有一栏,访问权限,我们下面看一下:
在这里插入图片描述
根据此结构,我们知道了页表的第一个作用:页表的存在可以有效的进行进程访问内存的安全检查!
我们配合一段代码,大家更好理解:

char* str = "hello Linux";
*str = 'H';

我们都知道hello Linux是在字符常量区的,是不可被修改的,它不可被修改的本质就是:在页表中,访问权限被设置为r(只读权限)。并不是因为是在代码区不可被修改,内存是可以随意读写的,因为有页表权限的限制。
页表的第二个作用:将无序变有序
物理内存是不分代码区,栈区,堆区等的,数据在物理内存中的存储是无序的。
页表的存在让进程以统一的视角看待内存,所以任意一个进程,可以通过地址空间+页表可以将乱序的内存数据,变为有序,分门别类的规划好!
CPU中有一个寄存器CR3,它会保存当前进程的页表地址,此页表地址直接就是物理地址操作系统给用户一个映射的页表,是为了上面的两个作用,它自己是不需要的。

扩展

总结:

  • 每一个进程都是有页表的;
  • 进程切换,不仅仅是PCB与代码、数据的切换,切换时还要带走自己的进程地址空间与页表。

根据以上的学习,我们想一下,我们的内存只有16/32/64,但是运行一个几百G的大型游戏,是怎么运行的呢?
其实并不是要把这几百G的数据全部加载上来的,而是将数据边加载边执行,对挂起的一个模块数据与代码先换出,然后加载需要加载的,这样进程在内存中就动态的运行起来了。
在这里插入图片描述
这就是地址空间的分配。当我们其中一块代码被执行完,我们可以覆盖式的像物理内存中重新加载内容,或者重新开辟新的物理内存,重新建立新的映射关系,就可以让程序边加载边执行。
页表中,还有可能存在虚拟地址存在,其他都不存在的情况:
当访问到页表的虚拟地址存在,其他内容不存在时,此时访问暂停,操作系统先申请内存,再根据虚拟地址找到那个可执行程序,重新加载到内存里,并把对应的物理内存放入页表,这时再开始访问,就开始运行新加载的代码了。这个过程叫做缺页中断
在这里插入图片描述
我们其实也不难发现,这背后的一切进程是完全不知道的,是os给做的,所以页表的第三个作用:
页表 左边是进程管理,右边是内存管理。降低进程管理和内存管理的耦合度

6、为什么要有地址空间?

通过上面的学习,我们来总结一下这个问题的答案:

  • 1、有效的保护了物理地址的安全。通过进程地址空间+页表的映射,对不合法的操作可以有效的拦截。
  • 2、将物理地址的无序变为有序。物理内存是不分代码区,栈区,堆区等的,数据在物理内存中的存储是无序的。页表的存在让进程以统一的视角看待内存,所以任意一个进程,可以通过地址空间+页表可以将乱序的内存数据,变为有序,分门别类的规划好!
  • 3、降低进程管理和物理内存管理之间的耦合度。因为进程地址空间和页表的存在,物理内存可以不关心数据类型,直接对数据进行加载,这样进程管理与物理内存管理就做到了解耦。
  • 4、保证进程的独立性。因为地址空间的存在,各个进程都认为所有的内存空间都属于自己。每个进程都有自己的地址空间+页表,这两者配合实现了进程的独立性,每个不知道也不需要知道其他进程的存在!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/633139.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python程序开发系列】一文搞懂argparse模块的常见用法(案例+源码)

一、引言 argsparse是python的命令行解析的标准模块&#xff0c;内置于python&#xff0c;不需要安装。这个库可以让我们直接在命令行中就可以向程序中传入参数并让程序运行。 在运行深度学习程序时。往往会因为电脑配置不行导致程序运行慢卡&#xff0c;需要将程序在虚机上进行…

Dubbo使用详解

简介 Dubbo是一个高性能、轻量级的开源Java RPC框架&#xff0c;由阿里巴巴公司开发并开源。它提供了三大核心能力&#xff1a;面向接口的远程方法调用&#xff0c;智能容错和负载均衡&#xff0c;以及服务自动注册和发现。Dubbo使得应用可通过高性能的 RPC 实现服务的输出和输…

浅聊雷池社区版(WAF)的tengine

雷池社区版是一个开源的免费Web应用防火墙&#xff08;WAF&#xff09;&#xff0c;专为保护Web应用免受各种网络攻击而设计。基于强大的Tengine&#xff0c;雷池社区版提供了一系列先进的安全功能&#xff0c;适用于中小企业和个人用户。 Tengine的故事始于2011年&#xff0c;…

解析Transformer模型

原文地址&#xff1a;https://zhanghan.xyz/posts/17281/ 进入Transformer RNN很难处理冗长的文本序列&#xff0c;且很容易受到所谓梯度消失/爆炸的问题。RNN是按顺序处理单词的&#xff0c;所以很难并行化。 用一句话总结Transformer&#xff1a;当一个扩展性极佳的模型和一…

springcloud Client端cloud-consumer-order80

文章目录 简介建立module修改pom修改yml主启动类把公共代码写在一个mudule 里面测试 简介 这个是和之前的8001相互配合端口测试 这里的80的用户测试端口。 代码在&#xff1a;GitHub 上&#xff1a;https://github.com/13thm/study_springcloud/tree/main/days2 建立module …

完美解决idea一直indexing,无法操作的问题

今天主要分享一下在使用idea 2020.3版本开发maven项目的时候&#xff0c;一直出现有效件index&#xff0c; 有时候是scaning indexing, 有时候是update indexing, indexing的时候&#xff0c;idea基本上就没办法操作了&#xff0c;连跳入到类或方法里都跳不了。不厌其烦。 于是…

模型Model:字符串列表模型QStringListModel

一、QStringListModel &#xff08;1&#xff09;功能&#xff1a;处理字符串列表的数据模型&#xff0c;可作为QListView的数据模型&#xff0c;在界面上显示和编辑字符串列表。 二、QStringListModel 类中的函数 1)、 QStringListModel(QObject *parent Q_NULLPTR) //构造函…

工程监测仪器振弦采集仪的新技术研究与创新方面

工程监测仪器振弦采集仪的新技术研究与创新方面 工程监测仪器振弦采集仪是一种用于测量和监测工程结构振动特性的仪器。传统的振弦采集仪主要采用振弦传感器和数据采集设备&#xff0c;通过对结构振动信号的采集和分析&#xff0c;可以获得结构的动态特性&#xff0c;如固有频…

【01】mapbox js api加载arcgis切片服务

需求&#xff1a; 第三方的mapbox js api加载arcgis切片服务&#xff0c;同时叠加在天地图上&#xff0c;天地图坐标系web墨卡托。 效果图&#xff1a; 形如这种地址去加载http://zjq2022.gis.com:8080/demo/loadmapboxtdt.html 思路&#xff1a; 需要制作一个和天地图比例…

vscode配置web开发环境(WampServer)

这里直接去下载了集成的服务器组件wampserver&#xff0c;集成了php&#xff0c;MySQL&#xff0c;Apache 可能会出现安装问题&#xff0c;这里说只有图上这些VC包都安装了才能继续安装&#xff0c;进入报错里提供的链接 在页面内搜索相关信息 github上不去可以去镜像站 下载…

《Python数据分析技术栈》第01章 02 Jupyter入门(Getting started with Jupyter notebooks)

02 Jupyter入门&#xff08;Getting started with Jupyter notebooks&#xff09; 《Python数据分析技术栈》第01章 02 Jupyter入门&#xff08;Getting started with Jupyter notebooks&#xff09; Before we discuss the essentials of Jupyter notebooks, let us discuss…

C#,字符串匹配(模式搜索)RK(Rabin Karp)算法的源代码

M.O.Rabin Rabin-Karp算法&#xff0c;是由M.O.Rabin和R.A.Karp设计实现的一种基于移动散列值的字符串匹配算法。 通常基于散列值的字符串匹配方法&#xff1a;&#xff08;1&#xff09;首先计算模式字符串的散列函数&#xff1b;&#xff08;2&#xff09;然后利用相同的散…

【漏洞攻击之文件上传条件竞争】

漏洞攻击之文件上传条件竞争 wzsc_文件上传漏洞现象与分析思路编写攻击脚本和重放措施中国蚁剑拿flag wzsc_文件上传 漏洞现象与分析 只有一个upload前端标签元素&#xff0c;并且上传任意文件都会跳转到upload.php页面&#xff0c;判定是一个apache容器&#xff0c;开始扫描…

IntelliJ IDEA 中输出乱码解决

最近tomcat突然在控制台输出乱码&#xff0c;各种乱码问题&#xff0c;查阅大量的资料&#xff0c;最终得以解决. IDEA控制台输出乱码 问题一&#xff1a;idea中tomcat控制台输出乱码 运行本地的tomcat\bin\start.bat文件页面显示正常 在idea中显示乱码 解决&#xff1a; 根…

WebRTC视频会议/视频客服系统EasyRTC进入会议室密码验证的开发与实现

基于WebRTC技术的EasyRTC视频会议系统&#xff0c;建设目标是让用户随时随地、快捷方便地进行视频会议&#xff0c;并根据行业需求有针对性地提供多样化、个性化功能&#xff0c;该系统是覆盖全球的实时音视频开发平台&#xff0c;支持一对一、一对多等视频通话&#xff0c;极大…

梳理从MVP变换到光栅化的过程

1.梳理从MVP变换到光栅化的过程 相关博客&#xff1a; 1.MVP变换 2.Rasterization&#xff08;光栅化&#xff09; 1.1 View/Camera transformation 此例中相机初始位置为&#xff08;0,0,5&#xff09;【备注&#xff1a;详见主函数中输入的值】经过 M view M_{\text{view}}…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-贴子列表分页显示实现

锋哥原创的SpringbootLayui python222网站实战&#xff1a; python222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火…

使用 ClassFinal 对SpringBoot jar加密加固并进行机器绑定

写在前面&#xff1a;各位看到此博客的小伙伴&#xff0c;如有不对的地方请及时通过私信我或者评论此博客的方式指出&#xff0c;以免误人子弟。多谢&#xff01;如果我的博客对你有帮助&#xff0c;欢迎进行评论✏️✏️、点赞&#x1f44d;&#x1f44d;、收藏⭐️⭐️&#…

【正点原子STM32】初识STM32(芯片分类、资料下载、命名规则、选型)

一、STM32是什么 二、STM32芯片分类 三、STM32命名规则 四、STM32选型 五、总结 一、STM32是什么 STM32是STMicroelectronics&#xff08;意法半导体&#xff09;公司推出的一系列32位的嵌入式系统微控制器&#xff08;Microcontroller Unit&#xff0c;MCU&#xff09;产品。…

网络安全 | 苹果承认 GPU 安全漏洞存在,iPhone 12、M2 MacBook Air 等受影响

1 月 17 日消息&#xff0c;苹果公司确认了近期出现的有关 Apple GPU 存在安全漏洞的报告&#xff0c;并承认 iPhone 12 和 M2 MacBook Air 受影响。 该漏洞可能使攻击者窃取由芯片处理的数据&#xff0c;包括与 ChatGPT 的对话内容等隐私信息。 安全研究人员发现&#xff0c;…