AI大模型学习笔记之二:什么是 AI 大模型的训练和推理?

在人工智能(AI)的领域中,我们经常听到训练(Training)推理(Inference) 这两个词汇,它们是构建强大 AI 模型的关键步骤。我们通过类比人类的学习过程来理解这两个概念,可以更加自然而生动地理解AI大模型的运作原理。

想象一下,当一个人类宝宝刚刚降临人间,还没开始学会说话,但是已经开始了对周围生活环境的观察和学习,在这个早期的学习阶段,婴儿周围会有很多人类语言输入,包括听到医生、护士、母亲和家人的对话、感知周围的环境,甚至是听音乐和观看视频。这个过程就像AI大模型的初始训练,大模型通过海量的数据输入来学习人类自然语言的规律和模式。

随着时间的推移,婴儿开始渐渐模仿和理解大人说的话,逐渐掌握了发出有意义的声音和词汇。这类似于人工智能在经过海量的数据训练后构建了一个具有理解和预测能力的模型,模型的参数就像是婴儿学习过程中不断调整和学习的语言能力。

在这里插入图片描述

当婴儿逐渐长大学会说话后,他们就可以和父母进行日常对话,理解意思并表达自己的感受和想法,产生了自己的语言。这阶段类似于AI大模型的推理,模型能够对新的语言和文本输入进行预测和分析。婴儿通过语言能力表达感受、描述物体和解决各种问题,这也类似于AI大模型在完成训练投入使用后在推理阶段应用于各类特定的任务,例如图像分类、语音识别等。

通过这个简单而贴近生活的类比,我们可以更加自然地理解AI大模型的训练和推理过程。就像人类学习语言一样,AI大模型通过大量数据的学习和模仿,逐渐构建起丰富而高效的模型,为解决各种实际问题提供了强大的工具。在这个学习过程中,我们更能感受到人工智能与人类学习的共通之处。

训练(Training)和推理(Inference)是AI大模型两个核心能力的基石。

在训练(Training)阶段,通过大量数据和算法,AI模型学会识别和生成规律。模型参数在此过程中不断调整,以最小化预测与实际值之间的误差,从而使其具备适应各种任务的学习能力,涵盖图像识别到自然语言处理等多个领域。

在训练阶段,大模型通过深度学习技术,通过多层神经网络,对接收输入的海量数据进行学习和优化,并通过学习调整模型的参数,使其能够对输入数据进行准确的预测。

这通常涉及到使用反向传播算法和优化器来最小化模型预测与实际标签之间的误差。为了提高模型的性能,一般需要使用大规模的数据集进行训练,以确保模型能够泛化到各种不同的情况。

这种学习方式,使得AI模型能够从数据中自动提取特征,进而实现对数据的自适应分析和处理。同时,AI大模型还采用了迁移学习技术,将已经在其他任务上训练好的模型,迁移到新的任务中,大大提高了训练效率。
在这里插入图片描述

推理(Inference)阶段则建立在训练完成的基础上,将训练好的模型应用于新的、未见过的数据。模型利用先前学到的规律进行预测、分类或生成新内容,使得AI在实际应用中能够做出有意义的决策,例如在医疗诊断、自动驾驶和自然语言理解等领域。

在推理阶段,训练好的模型被用于对新的、未见过的数据进行预测或分类。大型模型在推理阶段可以处理各种类型的输入,并输出相应的预测结果。推理可以在生产环境中进行,例如在实际应用中对图像、语音或文本进行分类,也可以用于其他任务,如语言生成、翻译等。

这两个关键能力的有机结合使得AI模型成为企业数据分析和决策的强大工具。

  • 通过训练,模型从历史数据中提取知识;
  • 通过推理,将这些知识应用于新场景,从而做出智能决策。

这强调了数据的关键作用,因为高质量的训练数据对确保模型性能和泛化能力至关重要。

下面我们以一个图像分类任务为例简要说明大模型的训练和推理过程:

假设我们要训练一个卷积神经网络(CNN)模型来对猫和狗的图片进行分类。
在这里插入图片描述

训练过程:

首先,我们需要构建一个庞大而多样的数据集,其中包含了大量标记有猫和狗的图像,以确保模型能够学到各种猫狗的特征。

接下来,我们选择深度学习框架(例如TensorFlow或PyTorch)来构建我们的卷积神经网络(CNN)模型。在这个例子中,我们可以借助预训练的CNN模型,并在其基础上添加一些自定义的层,以使其适应我们的猫狗分类任务。定义损失函数(比如交叉熵损失)和优化器(例如随机梯度下降SGD)是训练的基础。
在这里插入图片描述

接着将整个数据集分成训练集和验证集,训练集用于更新模型的参数,验证集用于评估模型的性能。通过将训练集输入到模型中,进行前向传播和反向传播,不断地更新模型参数以提高性能。通过监控验证集的表现,我们可以调整超参数,确保模型能够在未见过的数据上泛化。

经过多轮迭代后,当模型达到满意的性能水平时,我们保存模型以备后续的推理使用。

在这里插入图片描述

推理过程:

在推理过程中,我们需要对新的、未见过的图像进行分类。
在这里插入图片描述

首先,我们加载之前训练好的模型,包括保存的模型参数和结构

然后,将新的图像输入到模型中进行前向传播,得到模型的输出结果。这个输出结果通常是对每个类别的分数或概率。

通过应用softmax函数,我们将这些分数转换为表示每个类别概率的分布。这使得我们可以知道图像属于每个类别的可能性有多大。

最后,我们选择具有最高概率的类别作为模型的最终预测结果。这就是我们的模型根据学到的特征和规律对新图像进行分类的过程。

在整个训练和推理的过程中,我们可能会面临一些挑战,比如过拟合问题。为了解决这些问题,我们可以采用正则化技术,如L1、L2正则化或dropout,来限制模型的复杂性。此外,通过数据增强技术,如图像的旋转、缩放、翻转等,我们可以扩充训练数据集,提高模型的泛化能力。

在这里插入图片描述
在实际应用中,了解并处理这些挑战是确保模型在各种情况下表现良好的关键。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/630537.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Servlet中访问网页常遇到的问题

网页出现404 出现这一种情况是浏览器访问的资源不存在 第一种情况通常是路径出错请检查你的路径是否一致 第二种情况确认你的webapp是否被正确加载 smart tomcat由于只加载一个webapp 如果加载失败 就会直接启动失败 拷贝war方式到Tomcat要加载多个webapp如果失败只有日志 查…

软件测试|sqlalchemy relationship

简介 SQLAlchemy是一个流行的Python ORM(对象关系映射)库,它允许我们以面向对象的方式管理数据库。在SQLAlchemy中,relationship是一个重要的功能,用于建立表之间的关系。在本文中,我们将详细探讨relation…

AutoRuns下载安装使用教程(图文教程)超详细

「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 AutoRuns 是微软提供的一款「启动项管理」工具,可以检查开机自动加载的所有程…

UI设计中插画赏析和产品色彩分析

插画赏析: 1. 插画是设计的原创性和艺术性的基础 无论是印刷品、品牌设计还是UI界面,更加风格化的插画能够将不同的风格和创意加入其中,在激烈的竞争中更容易因此脱颖而出。留下用户才有转化。 2. 插画是视觉触发器,瞬间传达大量…

国产阿里的Copilot能提效30%吗?

国产阿里的Copilot能提效30%吗? Copilot简介 GitHub 和 OpenAI 共同打造的一款编程神器–Copilot, 这是一款立足于人工智能技术的编程助手。在此基础上,借助于 GitHub 庞大的代码库和来自全球的开源社区帮助,搭配 OpenAI 在自然…

cookie和session的工作过程和作用:弥补http无状态的不足

cookie是客户端浏览器保存服务端数据的一种机制。当通过浏览器去访问服务端时,服务端可以把状态数据以key-value的形式写入到cookie中,存储到浏览器。浏览器下次去服务服务端时,就可以把这些状态数据携带给服务器端,服务器端可以根…

【centos7系统】Redis-6.2.2版本集群搭建

转载说明:如果您喜欢这篇文章并打算转载它,请私信作者取得授权。感谢您喜爱本文,请文明转载,谢谢。 前redis最新版本已经是6.2.4,在集群搭建上和redis3.x、redis4.x区别很大。redis5以后,就不需要安装ruby了…

腾讯云主机优惠价格表(2024新版报价)

腾讯云服务器租用价格表:轻量应用服务器2核2G3M价格62元一年、2核2G4M价格118元一年,540元三年、2核4G5M带宽218元一年,2核4G5M带宽756元三年、轻量4核8G12M服务器446元一年、646元15个月,云服务器CVM S5实例2核2G配置280.8元一年…

Cpp多线程(一)

一、基本概念 1、程序是一段静态代码;进程是正在运行的程序;线程则是程序内部的执行路径。 上面这张图就解释了线程和多线程的意义。 2、若一个程序在同一时间执行多个线程,便是支持多线程的。一个进程中的多个线程共享相同的内存单元/内存…

[分布监控平台] Zabbis 监控

zabbix 是什么? zabbix 是一个基于 Web 界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案。zabbix 能监视各种网络参数,保证服务器系统的安全运营;并提供灵活的通知机制以让系统管理员快速定位/解决存在的各种问题。 zabbix …

微信小程序之组件和API

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您: 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持,想组团高效学习… 想写博客但无从下手,急需…

SpringBoot教程(十二) | SpringBoot集成JPA

SpringBoot教程(十二) | SpringBoot集成JPA 1. JPA简介 概念: JPA顾名思义就是Java Persistence API的意思,是JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的实体对象持久化到数据库中。 优势: 标准化 …

Linux驱动学习—IIC总线之FT5X06触摸驱动实验

1、实现触摸坐标值上报 流程图&#xff1a; 设备树如下&#xff1a; 触摸设备对应的设备树节点是&#xff1a; 读取坐标的寄存器&#xff1a; #include <linux/init.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/gpio.h> #i…

spring boot学习第七篇:通过spring boot使用redis

1、pom.xml文件里面增加如下依赖&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId> </dependency> 2、yml文件增加如下配置&#xff1a; redis:host: loc…

【不用找素材】ECS 游戏Demo制作教程(3) 1.17

一、生成墓碑 新建脚本如下&#xff1a; using Unity.Entities; using Unity.Mathematics;namespace ECSdemo {public struct GraveyardRandom : IComponentData{public Random Value;}}扩充GraveyardMono如下&#xff1a; using Unity.Entities; using Unity.Mathematics; …

【计算机硬件】3、输入输出技术、总线结构

文章目录 输入输出技术内存与接口地址的编址方法1、 内存与接口地址独立编址方法2、内存与接口地址统一编址方法 计算机和外设间的数据交互方式1、程序控制(查询)方式2、程序中断方式3、DMA方式&#xff08;直接主存存取&#xff09; 总线结构 输入输出技术 内存与接口地址的编…

【思科】IPsec VPN 实验配置(动态地址接入)

【思科】IPsec VPN 实验配置&#xff08;动态地址接入&#xff09; 注意实验需求配置思路配置命令拓扑R1基础配置配置第一阶段 IKE SA配置第二阶段 IPsec SA ISP_R2基础配置 R3基础配置配置第一阶段 IKE SA配置第二阶段 IPsec SA PCPC1PC2 检查建立成功查看命令清除IKE / IPse…

C/C++ 基本数据类型的范围

一、常见的数据类型及其范围 数据类型Size(64位)范围int4Byteunsigned int4Bytelong4Byteunsigned long4Bytelong long8Byteunsigned long long8Byte 查询Size代码&#xff1a;sizeof(类型) 查询范围代码&#xff1a;numeric_limits<类型>::max和numeric_limits<类…

django大数据_草稿本01

文档 Learning_Spark/5.Spark Streaming/ReadMe.md at master LeslieZhoa/Learning_Spark # 在pyspark下运行 from pyspark.ml.feature import HashingTF,IDF,Tokenizer # 导入相关包# 创建一个dataframe&#xff0c;toDF为定义列名 sentenceData spark.createDataFrame([(0…

数据科学与大数据导论期末复习笔记(大数据)

来自于深圳技术大学&#xff0c;此笔记涵盖了期末老师画的重点知识&#xff0c;分享给大家。 等深分箱和等宽分箱的区别&#xff1a;等宽分箱基于数据的范围来划分箱子&#xff0c;每个箱子的宽度相等。等深分箱基于数据的观测值数量来划分箱子&#xff0c;每个箱子包含相同数量…