LLM:Training Compute-Optimal Large Language Models

论文:https://arxiv.org/pdf/2203.15556.pdf

发表:2022

前文回顾:

OpenAI在2020年提出《Scaling Laws for Neural Language Models》:Scaling Laws(缩放法则)也一直影响了后续大模型的训练。其给出的结论是最佳计算效率训练涉及在相对适中的数据量上训练非常大的模型并在收敛之前early stopping所以后续的工作都专注于提升参数规模,设计越来越大的模型,而不是在更多的数据上训练较小的模型。每个人都认为模型大小比数据大小重要的多得多!但DeepMind在2022年提出了不同的看法。

摘要

1:目前的LLM大模型训练都不够充分,原因是:大部分精力主要花费在扩大模型尺寸上,训练数据却没有同步增长。这个主要是受OpenAI论文观点的影响) 

2:DeepMind团队发现:最优的训练是模型尺寸和训练的Token数量应该是等比例增长。如果模型尺寸翻倍,token数量也应该翻倍。

简介

DeepMind得到了与OpenAI相同的结论:大模型在训练到loss最低前已经到算力最优了,即在收敛前进行early stopping。尽管得出了同样的结论,但DeepMind认为:大型模型应训练更多的token,远超过OPenAI作者推荐的数量。具体来说,给定计算预算增加10倍,OpenAI建议模型大小应增加5.5倍,而训练token数量只应增加1.8倍。相反,DeepMind认为模型大小和训练令牌数量应该以相同的比例增长。

相关工作

OpenAI首先观测到了scale law法则,DeepMind也采用了相同的技术手段:训练不同尺寸的模型,然后进行观测。但他们存在以下不同点。

1:OpenAI固定了训练的token数目以及学习率方案,这阻止了他们研究这些超参数对损失的影响。相反,DeepMind发现将学习率调度设置为大约匹配训练token数量可以导致最好的最终损失,无论模型大小如何作者举例:130B token,使用cosine学习率。因为会在收敛前进行早停,所以观测到的都是中间状态(即训练token数量还没有到130B token 时候的loss),使用这些中间损失观测,导致对训练模型在小于130B token的数据上的有效性的低估,并最终导致了一个结论,即模型大小应比训练数据大小增长得更快。DeepMind的观点是同比例缩放

2:OpenAI使用的模型参数量比较小,DeepMind观测的范围更广。

3 估计最优的参数 / 训练token数目

首先训练一系列模型:模型大小和训练数据数量两方面都有所不同,然后使用所得到的训练曲线来拟合他们应该满足的经验规律。

训练70M到10B的一系列模型大小,每个模型大小针对四个不同的余弦周期长度进行训练。从这些曲线中,提取了每FLOP最小损失的包络,并用这些点来估计给定计算量条件下最优模型大小以及最优训练token数。(此处的scale law 实践与OpenAI一致)。从上图不难看出:模型越大,需要的算力越大,需要的token也越多。

左图可以看到计算量与模型性能呈现幂律关系(可以认为数据和模型都不受限制),根据中图和右图,可以发现N_{opt}\propto C^{a }D_{opt}\propto C^{b },即计算效率最优时,模型的参数与计算量的幂次成线性关系,数据量的大小也与计算量的幂次成线性关系

根据C=6ND,可以推算出a+b=1,但是a,b分别是多少存在分歧。

OpenAI:认为模型规模更重要,即a=0.73, b=0.27,

DeepMind在Chinchilla工作和Google在PaLM工作中都验证了 a=b=0.5 ,即模型和数据同等重要。

所以假定计算量整体放大10倍,OpenAI认为模型参数更重要,模型应放大10^{0.73} (5.32)倍,数据放大 10^{0.27} (1.86)倍;后来DeepMind和Google认为模型参数量与数据同等重要,两者都应该分别放大 10^{0.5} (3.16)倍。

3.1 方案1:固定模型,训练不同的token数目

通过方案1,得到N、D与C的幂次关系:模型尺寸和数据量同等重要,缩放比例相同,均为0.5。 

3.2 方案2:固定FLOP

 

选取9种不同的计算量:e18−e21 ,观测不同参数量模型的训练情况:

在每条曲线的最小值的左侧,模型太小——在较少数据上训练的较大模型将是一种改进。

在每条曲线的最小值的右侧,模型太大——在更多数据上训练的较小模型将是一种改进。

最好的模型处于最小值。

 这个是DeepMind推荐的模型参数N、训练数据D、训练算力C的配比。可以发现和OpenAI的推荐是不一样的。也与BaiChuan2中7B/13B训练需要2.6T的数据量对不上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/629448.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

day20【LeetCode力扣】142.环形链表Ⅱ

day20【LeetCode力扣】142.环形链表Ⅱ 1.题目描述 给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了…

STM32 TIM输出比较、PWM波形

单片机学习! 目录 一、输出比较简介 二、PWM简介 三、输出比较通道 3.1通用定时器的输出比较部分电路 3.2高级定时器的输出比较部分电路 四、输出模式控制器 五、PWM基本结构 六、PWM参数计算 总结 前言 文章讲述STM32定时器的输出比较功能,它主…

Windows Server 2019配置DNS服务器

正文共:1234 字 31 图,预估阅读时间:1 分钟 我们在给Windows Server添加角色和功能时,会发现有一项“远程桌面服务安装”,它的介绍为“为虚拟桌面基础结构(Virtual Desktop Infrastructure,VDI&…

Angular系列教程之MVC模式和MVVM模式

文章目录 MVC模式MVVM模式MVC与MVVM的区别Angular如何实现MVVM模式总结 在讨论Angular的时候,我们经常会听到MVC和MVVM这两种设计模式。这两种模式都是为了将用户界面(UI)和业务逻辑分离,使得代码更易于维护和扩展。在这篇文章中,我们将详细介…

介绍一个强大的免费开源.net反编译工具

dnSpy dnSpy 是一个用C#开发,开源的调试器和.NET 汇编编辑器。 即使您没有任何可用的源代码,也可以使用它来编辑和调试程序,并可以把代码导出成.net工程。

01 SpringBoot3快速入门

本次使用3.0.5版本 SpringBoot整合了之前的一切。 需求:浏览器发送/hello请求,返回"Hello,Spring Boot 3!" 总体开发步骤: 1. 创建Maven工程 2. 添加依赖(springboot父工程依赖 , web启动器依赖) 3. 编写启动引导类(springboot项…

速通——决策树(泰坦尼克号乘客生存预测案例)

一、决策树 1、概述 树中每个内部节点表示一个特征上的判断,每个分支代表一个判断结果的输出,每个叶子节点代表一种分类结果 2、建立过程 1. 特征选择:选取有较强分类能力的特征。 2. 决策树生成:根据选择的特征生成决策树。 3.…

Gazebo的模型下载。

git clone zouxu634866/gazebo_modelshttps://gitee.com/zouxu6348660/gazebo_models.git,并完成路径配置。 (本文提供了gitee下载,国外的Github下载较慢。)

芯课堂 | 华芯微特MCU在PCB板级设计中对ISP引脚的应用

1.应用描述 ISP(In System Programming),在系统编程,使用片内驻留出厂引导程序(BootROM)配合UART / SPI等外设进行烧录。 华芯微特全系MCU的ISP操作说明:当芯片上电后检测到 ISP 引脚持续 5ms…

LLaMa2 Chat gpt 大模型本地部署初体验

一直想在自己电脑或者测试环境随便找台服务器尝试部署一下“大模型”,但“大模型”对于内存和GPU的要求令人望而却步,层出不穷的各种术语也令人困惑,有点难以下手。 经过一段时间,在百度千帆大模型平台、讯飞星火大模型平台、魔搭…

【数据结构】哈希表详解,举例说明 java中的 HashMap、HashTable及其区别

一、哈希表(Hash Table)简介: 哈希表是一种数据结构,用于实现字典或映射等抽象数据类型。它通过把关键字映射到表中的一个位置来实现快速的数据检索。哈希表的基本思想是利用哈希函数将关键字映射到数组的索引位置上,…

【征服redis2】redis的事务与lua

1.redis事务介绍 在前面我们介绍了redis的几种典型数据结构和应用,本文我们来看一下redis的事务问题。事务也是数据库的重要主题,熟悉关系型数据库的读者应该对事务比较了解,简单地说,事务表示一组动作,要么全部执行&…

esp32-idf Eclipse Log日志打印demo

Log日志打印demo 1、代码例程 esp32-S2 芯片 / Eclipse软件 开发环境 #include <stdio.h> #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_system.h" #include "esp_…

【linux】终端发送网络请求与文件下载

发送网络请求 linux的终端中发送网络请求可以使用curl命令。 语法&#xff1a; curl [url] 但是他返回的是html代码&#xff0c;因为在终端中&#xff0c;他无法像浏览器中一样把访问到的html代码渲染成我们访问的页面&#xff0c;所以我们只能拿到他的源码。 访问CSDN - 专…

1.机器学习-机器学习算法分类概述

机器学习-机器学习算法分类概述 个人简介机器学习算法分类&#xff1a;监督学习、无监督学习、强化学习一监督学习1. 监督学习分类任务举例&#xff1a;1.1 特征1.2 标签 二无监督学习1.关键特点2.应用示例3.常见的无监督学习算法 三强化学习1.定义2.示例场景 四机器学习开发流…

数据结构之串|数组|广义表

串 数组 广义表 总结&#xff1a;

【加强版】小学数学出题,加减乘除混合运算,支持自定义数字,一键打印

在线预览&#xff1a;在线HTML代码预览和运行工具 - UU在线工具 复制下面代码后到该地址预览即可 注意&#xff1a;在线预览不能打印。如需打印&#xff0c;在电脑本地上新建文本文档&#xff0c;粘贴代码后保存&#xff0c;然后把文件后缀改为.html运行&#xff0c;出题点击…

【CF闯关练习】—— 1400分(C. Make Good、B. Applejack and Storages)

&#x1f30f;博客主页&#xff1a;PH_modest的博客主页 &#x1f6a9;当前专栏&#xff1a;cf闯关练习 &#x1f48c;其他专栏&#xff1a; &#x1f534;每日一题 &#x1f7e1; C跬步积累 &#x1f7e2; C语言跬步积累 &#x1f308;座右铭&#xff1a;广积粮&#xff0c;缓…

isis小实验

要求: 1.合理规划level1-2 2.r1访问r5走r6且走上面 3.全网可达 个人理解:以重发布的视角:is-level level1即L1可以看做rip,L2可以看做OSPF,L1-2可以看作是既要rip又要OSPF,优点:isis只用在每个路由器上宣告一次 缺点:isis需要每个接口上输isis enable 1(序号)特点:L1-2会自动下…

vue流程图

效果图 组件 <template><div class="processBox" v-if="list.length"><div class="childs"><div class="child" v-for="(item,index) in list" :key="item.id +-child-+index"><div…