基于时域有限差分法的FDTD的计算电磁学算法-YEE网格下的更新公式推导

基于时域有限差分法的FDTD的计算电磁学算法(含Matlab代码)-YEE网格下的更新公式推导

参考书籍:The finite-difference time-domain method for electromagnetics with MATLAB simulations(国内翻译版本:MATLAB模拟的电磁学时域有限差分法)
代码推荐:The finite-difference time-domain method for electromagnetics with MATLAB simulations的附件代码
我最初也是基于这个代码学习的

FDTD算法:采用差分直接离散时域Maxwell方程,电磁场的求解基于时间步的迭代,无需存储全空间的电磁场信息,内存消耗较小,同时采用立方体网格和差分算法,网格形式和算法均十分简单,计算速度快,基于时域算法,特别适合“宽带问题”的求解。但是,简单的立方体方体网格带来的弊端就是模型拟合精度较低,对于含有精细结构的模型,计算精度较低,同时基于“微分方程”,计算区域需要设置截断
详细对比参考:常用计算电磁学算法特性与电磁软件分析

1、从麦克斯韦开始的FDTD时域有限差分法

1.1 麦克斯韦方程

FDTD叫时域有限差分法,显然,其依赖的麦克斯韦方程也是时域的。麦克斯韦时域微分方程为:
∇ × H = ∂ D ∂ t + J ∇ × E = − ∂ B ∂ t − M ∇ ⋅ D = ρ e ∇ ⋅ B = ρ m \begin{gathered} \nabla\times \mathbf{H}= {\frac{\partial \mathbf{D}}{\partial t}}+\boldsymbol{J} \\ \nabla\times \mathbf{E}=-{\frac{\partial \mathbf{B}}{\partial t}}-\mathbf{M} \\ \nabla\cdot\mathbf{D}=\rho_{\mathrm{e}} \\ \nabla\cdot \mathbf{B}=\rho_{m} \end{gathered} ×H=tD+J×E=tBMD=ρeB=ρm
式中,E为电场强度(V/m);D为电位移(C/m);H为磁场强度(A/m);B为磁通量密度(Wb/m°);J为电流密度(A/m);M为磁流密度(V/m); ρ e \rho_{e} ρe为电荷密度(C/m); ρ m \rho_{m} ρm为磁荷密度(Wb/m)。

依稀记得当时老师说,麦克斯韦方程有其直观理解,分别是:
1. 变化的电场和电流会产生磁场
2. 变化的磁场和磁荷会产生电场(自然界无磁荷,一般是等效出来)
3. 电流源产生电场
4. 磁流源产生磁场

1.2 本构关系

本构关系对补充麦克斯韦方程和描述媒质的特性是必要的,本构关系对线性、各向同性和非色散媒质可以写成:
D = ε E B = μ H . \begin{aligned}D&=\varepsilon E\\B&=\mu H\end{aligned}. DB=εE=μH.
其中, ε \varepsilon ε为媒质的介电常数; μ \mu μ为媒质的磁导率。在自由空间,有:
ε = ε 0 = 8.854 × 1 0 − 12 F / m μ = μ 0 = 4 π × 1 0 − 7 H / m \begin{aligned}\varepsilon=&\varepsilon_0=8.854\times10^{-12}\quad\mathrm{F/m}\\\mu=&\mu_0=4\pi\times10^{-7}\quad\mathrm{H/m}\end{aligned} ε=μ=ε0=8.854×1012F/mμ0=4π×107H/m
在常规的电磁学表述中,我们更多的使用相对介电常数。比如说耳熟能详的FR4板材,其相对介电常数大概是 ε r = 4.2 \varepsilon_r=4.2 εr=4.2。 这就代表其实际的介电常数为 ε F R 4 = ε r ε 0 \varepsilon_{FR4}=\varepsilon_r\varepsilon_0 εFR4=εrε0。但是,还有一个重要参数和本构关系相关,那就是损耗角正切 t a n δ tan \delta tanδ

对于FR4板材,一般认为其损耗角正切为 t a n δ = 0.02 tan \delta=0.02 tanδ=0.02,根据微波工程1.3小节的公式:
ϵ = ϵ ′ − j ϵ ′ ′ = ϵ ′ ( 1 − j tan ⁡ δ ) = ϵ 0 ϵ r ( 1 − j tan ⁡ δ ) \epsilon=\epsilon^{\prime}-j\epsilon^{\prime\prime}=\epsilon^{\prime}(1-j\tan\delta)=\epsilon_{0}\epsilon_{r}(1-j\tan\delta) ϵ=ϵjϵ′′=ϵ(1jtanδ)=ϵ0ϵr(1jtanδ),其对应的介电常数应该是:
ε F R 4 = ε r ( 1 − j tan ⁡ δ ) ε 0 = ( 4.2 − j 0.02 ) ε 0 \varepsilon_{FR4}=\varepsilon_r(1-j\tan\delta)\varepsilon_0=(4.2-j0.02)\varepsilon_0 εFR4=εr(1jtanδ)ε0=(4.2j0.02)ε0
其对应的相对介电常数为:4.2-j0.02

在进行FDTD的推导时,因为在 FDTD 的更新方程的过程中满足散度方程,所以只需要考虑两个旋度方程即可。麦克斯韦中的电流密度 J \boldsymbol{J} J等于导体电流密度 J c \boldsymbol{J_c} Jc与施加电流密度 J i \boldsymbol{J_i} Ji之和,即:
J = J c + J i \boldsymbol{J}=\boldsymbol{J_{\mathrm{c}}}+\boldsymbol{J_{\mathrm{i}}} J=Jc+Ji
对于磁流密度,也类似:
M = M c + M i \boldsymbol{M}=\boldsymbol{M_{\mathrm{c}}}+\boldsymbol{M_{\mathrm{i}}} M=Mc+Mi
因此,对原来的麦克斯韦方程拆分一下,就是:
∇ × H = ε ∂ E ∂ t + σ e E + J i \nabla\times \boldsymbol{H}=\varepsilon\frac{\partial \boldsymbol{E}}{\partial t}+\sigma^{e}\boldsymbol{E}+\boldsymbol{J_{i}} ×H=εtE+σeE+Ji
和:
∇ × E = − μ ∂ H ∂ t − σ m H − M i \nabla\times \boldsymbol{E}=-\mu\frac{\partial \boldsymbol{H}}{\partial t}-\sigma^{m}\boldsymbol{H}-\boldsymbol{M_{i}} ×E=μtHσmHMi

旋度的计算公式大家还记得不:
∇ × F ( x , y , z ) = ∣ i ^ j ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z F x F y F z ∣ = ( ∂ F z ∂ y − ∂ F y ∂ z ) i ^ + ( ∂ F x ∂ z − ∂ F z ∂ x ) j ^ + ( ∂ F y ∂ x − ∂ F x ∂ y ) k ^ \begin{aligned} &\nabla\times\mathbf{F}(x,y,z)=\begin{vmatrix}\hat{\boldsymbol{i}}&\hat{\boldsymbol{j}}&\hat{\boldsymbol{k}}\\\frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\F_x&F_y&F_z\end{vmatrix} \\ &=\left(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z}\right)\hat{\boldsymbol{i}}+\left(\frac{\partial F_x}{\partial z}-\frac{\partial F_z}{\partial x}\right)\hat{\boldsymbol{j}}+\left(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y}\right)\hat{\boldsymbol{k}} \end{aligned} ×F(x,y,z)= i^xFxj^yFyk^zFz =(yFzzFy)i^+(zFxxFz)j^+(xFyyFx)k^
把麦克斯韦旋度方程按照三个方向x,y,z全部展开,就可以得到6个方程:
∂ E x ∂ t = 1 ε x ( ∂ H z ∂ y − ∂ H y ∂ z − σ x e E x − J i x ) ∂ E y ∂ t = 1 ε y ( ∂ H x ∂ z − ∂ H z ∂ x − σ y e E y − J i y ) ∂ E z ∂ t = 1 ε z ( ∂ H y ∂ x − ∂ H x ∂ y − σ z e E z − J i z ) ∂ H x ∂ t = 1 μ x ( ∂ E y ∂ z − ∂ E z ∂ y − σ x m H x − M i x ) ∂ H y ∂ t = 1 μ y ( ∂ E x ∂ x − ∂ E x ∂ z − σ y m H y − M i y ) ∂ H z ∂ t = 1 μ z ( ∂ E x ∂ y − ∂ E y ∂ x − σ z m H z − M i z ) \begin{gathered} \frac{\partial\boldsymbol{E}_x}{\partial t}= \frac1{\varepsilon_x}\Big(\frac{\partial H_z}{\partial y}-\frac{\partial H_y}{\partial z}-\sigma_x^eE_x-J_{ix}\Big) \\ \frac{\partial E_y}{\partial t}= \frac1{\varepsilon_y}\Big(\frac{\partial H_x}{\partial z}-\frac{\partial H_z}{\partial x}-\sigma_y^eE_y-J_{iy}\Big) \\ \frac{\partial E_z}{\partial t}= \frac{1}{\varepsilon_{z}}\Big(\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}-\sigma_{z}^{e}E_{z}-J_{iz}\Big) \\ \frac{\partial H_x}{\partial t}= \frac1{\mu_x}\Big(\frac{\partial E_y}{\partial z}-\frac{\partial E_z}{\partial y}-\sigma_x^mH_x-M_{ix}\Big) \\ \frac{\partial H_y}{\partial t}= \frac1{\mu_y}\Big(\frac{\partial\boldsymbol{E}_x}{\partial x}-\frac{\partial\boldsymbol{E}_x}{\partial\boldsymbol{z}}-\boldsymbol{\sigma}_y^\mathfrak{m}H_y-\boldsymbol{M}_{iy}\Big) \\ \frac{\partial H_z}{\partial t}= \frac{1}{\mu_{z}}\Big(\frac{\partial\boldsymbol{E}_{x}}{\partial y}-\frac{\partial\boldsymbol{E}_{y}}{\partial x}-\sigma_{z}^{\mathfrak{m}}H_{z}-\boldsymbol{M}_{iz}\Big) \end{gathered} tEx=εx1(yHzzHyσxeExJix)tEy=εy1(zHxxHzσyeEyJiy)tEz=εz1(xHyyHxσzeEzJiz)tHx=μx1(zEyyEzσxmHxMix)tHy=μy1(xExzExσymHyMiy)tHz=μz1(yExxEyσzmHzMiz)

2、空间差分与时间差分

2.1、非常简单的差分方程

FDTD是在离散网格中进行迭代的,上面的麦克斯韦公式有大量的求导计算,这该如何解决呢?答案是差分近似。大家学高数都学过导数的近似吧:
f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f^{'}(x)=\underset{\Delta x\to0}{\operatorname*{lim}}\frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x)
如果 Δ x \Delta x Δx非常小,那么:
f ′ ( x ) ≈ f ( x + Δ x ) − f ( x ) Δ x f^{'}(x)\approx\frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)Δxf(x+Δx)f(x)
但是为了实现更高的精度,所以采用FDTD都会采用双向差分公式:
f ′ ( x ) ≈ f ( x + Δ x ) − f ( x − Δ x ) 2 Δ x f^{^{\prime}}(x){\approx}\frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x} f(x)xf(x+Δx)f(xΔx)
实际上,此处使用的是近似,也存在高阶的FDTD的算法,对于此近似考虑了更多项,精度会更高(参考“基于高阶时域有限差分法平面波及完全匹配层的研究”等):
f ′ ( x ) = f ( x + Δ x ) − f ( x − Δ x ) 2 Δ x − ( Δ x 2 ) 6 + . . . = f ( x + Δ x ) − f ( x − Δ x ) 2 Δ x + O ( ( Δ x ) 2 ) f^{\prime}(x)=\frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x}-\frac{(\Delta x^{2})}{6}+...=\frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x}+O((\Delta x)^{2}) f(x)=xf(x+Δx)f(xΔx)6(Δx2)+...=xf(x+Δx)f(xΔx)+O((Δx)2)

2.2、差分方程的运用

在FDTD算法中,网格被剖分为YEE网格的形式,电场和磁场元胞差半个身位,其更新的时间步也是差 0.5 Δ t 0.5\Delta t 0.5Δt
在这里插入图片描述
具体来讲,实际的电场网格和磁场网格的位置是:
E x ( i , j , k ) ⇒ ( ( i − 0 , 5 ) Δ x , ( j − 1 ) Δ y , ( k − 1 ) Δ z ) E y ( i , j , k ) ⇒ ( ( i − 1 ) Δ x , ( j − 0.5 ) Δ y , ( k − 1 ) Δ z ) E z ( i , j , k ) ⇒ ( ( i − 1 ) Δ x , ( j − 1 ) Δ y , ( k − 0.5 ) Δ z ) H x ( i , j , k ) ⇒ ( ( i − 1 ) Δ x , ( j − 0.5 ) Δ y , ( k − 0.5 ) Δ z ) H y ( i , j , k ) ⇒ ( ( i − 0.5 ) Δ x , ( j − 1 ) Δ y , ( k − 0.5 ) Δ z ) H z ( i , j , k ) ⇒ ( ( i − 0.5 ) Δ x , ( j − 0.5 ) Δ y , ( k − 1 ) Δ z ) \begin{aligned} E_x(i,j,k)\Rightarrow\left((i-0,5)\Delta x,(j-1)\Delta y,(k-1)\Delta z\right)\\ E_y(i,j,k)\Rightarrow\left((i-1)\Delta x,(j-0.5)\Delta y,(k-1)\Delta z\right)\\ E_z(i,j,k)\Rightarrow\left((i-1)\Delta x,(j-1)\Delta y,(k-0.5)\Delta z\right)\\ H_x(i,j,k)\Rightarrow\left((i-1)\Delta x,(j-0.5)\Delta y,(k-0.5)\Delta z\right)\\ H_y(i,j,k)\Rightarrow((i-0.5)\Delta x,(j-1)\Delta y,(k-0.5)\Delta z) \\ H_z(i,j,k)\Rightarrow((i-0.5)\Delta x,(j-0.5)\Delta y,(k-1)\Delta z) \end{aligned} Ex(i,j,k)((i0,5)Δx,(j1)Δy,(k1)Δz)Ey(i,j,k)((i1)Δx,(j0.5)Δy,(k1)Δz)Ez(i,j,k)((i1)Δx,(j1)Δy,(k0.5)Δz)Hx(i,j,k)((i1)Δx,(j0.5)Δy,(k0.5)Δz)Hy(i,j,k)((i0.5)Δx,(j1)Δy,(k0.5)Δz)Hz(i,j,k)((i0.5)Δx,(j0.5)Δy,(k1)Δz)

更新的时间步也是差 0.5 Δ t 0.5\Delta t 0.5Δt:FDTD算法在离散的时间瞬间取样和计算场值,但是电场和磁场取样计算并不是在相同的时刻。对时间步 Δ t \Delta t Δt,电场E的取样时刻为:0, Δ t \Delta t Δt,2 Δ t \Delta t Δt,3 Δ t \Delta t Δt,…,n Δ t \Delta t Δt;而磁场H取样时刻为:0.5 Δ t \Delta t Δt,1.5 Δ t \Delta t Δt,2.5 Δ t \Delta t Δt,…(n+0.5) Δ t \Delta t Δt。即电场取样在时间的整数步长时刻,而磁场取样时刻为半整数时间步时刻。它们之间的时间差为半个时间步。

因此,考虑一个上面得到的麦克斯韦的方程(以Ex方向为例):
∂ E x ∂ t = 1 ε x ( ∂ H z ∂ y − ∂ H y ∂ z − σ x e E x − J i r ) \frac{\partial E_x}{\partial t}=\frac1{\varepsilon_x}\left(\frac{\partial H_z}{\partial y}-\frac{\partial H_y}{\partial z}-\sigma_x^eE_x-J_{ir}\right) tEx=εx1(yHzzHyσxeExJir)
观察其导数项,分别有时间的差分项 ∂ E x ∂ t \frac{\partial E_x}{\partial t} tEx和空间的差分项 ∂ H z ∂ y \frac{\partial H_z}{\partial y} yHz ∂ H y ∂ z \frac{\partial H_y}{\partial z} zHy

方程中的导数可以用中心差分来近似,此时 E x n ( i , j , k ) E_x^n(i,j,k) Exn(i,j,k)的位置为中心差分公式的中心点,而时间上应以 ( n + 0.5 ) Δ t (n+0.5)\Delta t (n+0.5)Δt作为中心点(因为电场E的取样时刻为:0, Δ t \Delta t Δt,2 Δ t \Delta t Δt,3 Δ t \Delta t Δt,…,n Δ t \Delta t Δt,而 ( n + 0.5 ) Δ t (n+0.5)\Delta t (n+0.5)Δt差分后可以得到n和n+1,符合取样时刻)。因此,第一项 ∂ E x ∂ t \frac{\partial E_x}{\partial t} tEx可以写成如下的差分形式:
E x n + 0.5 ( i , j , k ) = E x n + 1 ( i , j , k ) − E x n ( i , j , k ) Δ t E_x^{n+0.5}(i,j,k)=\frac{E_x^{n+1}(i,j,k)-E_x^n(i,j,k)}{\Delta t} Exn+0.5(i,j,k)=ΔtExn+1(i,j,k)Exn(i,j,k)
而空间的差分项 ∂ H z ∂ y \frac{\partial H_z}{\partial y} yHz可以写成:
∂ H z ∂ y = H z n + 1 2 ( i , j , k ) − H z n + 1 2 ( i , j − 1 , k ) Δ y \frac{\partial H_z}{\partial y}=\frac{H_z^{n+\frac12}(i,j,k)-H_z^{n+\frac12}(i,j-1,k)}{\Delta y} yHz=ΔyHzn+21(i,j,k)Hzn+21(i,j1,k)

2.3、得到差分方程

把所有项都写成差分形式,就可以得到3D的FDTD更新方程:
E x n + 1 ( i , j , k ) = C e x e ( i , j , k ) × E x n ( i , j , k ) + C e x h z ( i , j , k ) × ( H z n + 1 2 ( i , j , k ) − H z n + 1 2 ( i , j − 1 , k ) ) + C e x h y ( i , j , k ) × ( H y n + 1 2 ( i , j , k ) − H y n + 1 2 ( i , j , k − 1 ) ) + C e x j ( i , j , k ) × J i x n + 1 2 ( i , j , k ) \begin{aligned} E_{x}^{n+1}\left(i,j,k\right)& =C_{exe}(i,j,k)\times E_x^n(i,j,k) \\ &+C_{exhz}(i,j,k)\times(H_{z}^{n+\frac12}(i,j,k)-H_{z}^{n+\frac12}(i,j-1,k)) \\ &+C_{\mathrm{exhy}}(i,j,k)\times(H_y^{n+\frac12}(i,j,k)-H_y^{n+\frac12}(i,j,k-1)) \\ &+C_{exj}\left(i,j,k\right)\times J_{ix}^{n+\frac12}(i,j,k) \end{aligned} Exn+1(i,j,k)=Cexe(i,j,k)×Exn(i,j,k)+Cexhz(i,j,k)×(Hzn+21(i,j,k)Hzn+21(i,j1,k))+Cexhy(i,j,k)×(Hyn+21(i,j,k)Hyn+21(i,j,k1))+Cexj(i,j,k)×Jixn+21(i,j,k)
C开头的都是系数,为了书写方便,其实际的值为:
C e x e ( i , j , k ) = 2 ε z ( i , j , k ) − Δ t σ z e ( i , j , k ) 2 ε z ( i , j , k ) + Δ t σ z e ( i , j , k ) C e x h y ( i , j , k ) = 2 Δ t ( 2 ε z ( i , j , k ) + Δ t σ z e ( i , j , k ) ) Δ x C e x h y ( i , j , k ) = − 2 Δ t ( 2 ε z ( i , j , k ) + Δ t σ z e ( i , j , k ) ) Δ y C e x j ( i , j , k ) = − 2 Δ t 2 ε z ( i , j , k ) + Δ t σ z e ( i , j , k ) \begin{gathered} C_{exe}(i,j,k)= \frac{2\varepsilon_z(i,j,k)-\Delta t\sigma_z^e(i,j,k)}{2\varepsilon_z(i,j,k)+\Delta t\sigma_z^e(i,j,k)} \\ C_{exhy}(i,j,k)= \frac{2\Delta t}{(2\varepsilon_z(i,j,k)+\Delta t\sigma_z^e(i,j,k))\Delta x} \\ C_{{exhy}}(i,j,k)= -\frac{2\Delta t}{(2\varepsilon_z(i,j,k)+\Delta t\sigma_z^e(i,j,k))\Delta y} \\ C_{exj}\left(i,j,k\right) =-\frac{2\Delta t}{2\varepsilon_z(i,j,k)+\Delta t\sigma_z^e(i,j,k)} \end{gathered} Cexe(i,j,k)=2εz(i,j,k)+Δtσze(i,j,k)2εz(i,j,k)Δtσze(i,j,k)Cexhy(i,j,k)=(2εz(i,j,k)+Δtσze(i,j,k))ΔxtCexhy(i,j,k)=(2εz(i,j,k)+Δtσze(i,j,k))ΔytCexj(i,j,k)=2εz(i,j,k)+Δtσze(i,j,k)t
当然,这只是6个方程中的一个,更加详细的方程参考:
MATLAB模拟的电磁学时域有限差分法的1.3。看看对应的matlab代码是怎么写的(没有电流就可以省略Cexj):

current_time  = current_time + dt/2;Ex(1:nx,2:ny,2:nz) = Cexe(1:nx,2:ny,2:nz).*Ex(1:nx,2:ny,2:nz) ...+ Cexhz(1:nx,2:ny,2:nz).*...(Hz(1:nx,2:ny,2:nz)-Hz(1:nx,1:ny-1,2:nz)) ...+ Cexhy(1:nx,2:ny,2:nz).*...(Hy(1:nx,2:ny,2:nz)-Hy(1:nx,2:ny,1:nz-1));   
% General electric field updating coefficients
% Coeffiecients updating Ex
Cexe  =  (2*eps_r_x*eps_0 - dt*sigma_e_x) ..../(2*eps_r_x*eps_0 + dt*sigma_e_x);
Cexhz =  (2*dt/dy)./(2*eps_r_x*eps_0 + dt*sigma_e_x);
Cexhy = -(2*dt/dz)./(2*eps_r_x*eps_0 + dt*sigma_e_x);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/628615.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MATLAB】 SSA奇异谱分析信号分解算法

有意向获取代码,请转文末观看代码获取方式~ 1 基本定义 SSA奇异谱分析(Singular Spectrum Analysis)是一种处理非线性时间序列数据的方法,可以对时间序列进行分析和预测。 它基于构造在时间序列上的特定矩阵的奇异值分解&#…

C#,入门教程(66)——枚举Enum的高等用法

前言:国内码农与国外优秀程序员的最大区别是,我们的专家、教授喜欢唾沫横飞地,夸夸其谈语言特性、框架、性能,唯一目的是带私货(书籍或教程),很少能写出真有用的程序。差距在哪呢?基…

线性代数——行列式相关性质

目录 一、行列式与它的转置列行列式相等 二、对换行列式的两行(列),行列式变号 三、行列式某行(列)有公因子k,则k可以提到行列式外 四、行列式中若两行成比例,则行列式为0 五、行列式的某一行…

Python | 三、函数

函数的形参和实参(对应卡码网11题句子缩写) 除非实参是可变对象,如列表、字典和集合,则此时形参会复制实参的地址,即此时二者指向同一个地址,因此在函数内对形参的操作会影响到实参除这种情况外&#xff0…

嵌入式应用开发学习建议

学习嵌入式应用开发需要掌握一定的编程语言、操作系统和硬件知识,以下是一些学习嵌入式应用开发的建议: 1)学习C/C等编程语言:C/C是嵌入式系统最常用的编程语言之一,掌握这些语言的语法和特性可以帮助开发人员更好地理解嵌入式系…

What is `HttpServletRequestWrapper` does?

HttpServletRequestWrapper 是 Java Servlet API 中的一个类,作为 HttpServletRequest 接口的包装器(Decorator)实现。 该类设计为装饰者模式(Decorator Pattern)的一部分,允许开发人员通过包装现有的 Http…

【DP】53.最大子数组和

题目 法1&#xff1a;DP class Solution {public int maxSubArray(int[] nums) {if (nums null || nums.length 0) {return 0;}int n nums.length, res nums[0];int[] dp new int[n];dp[0] nums[0];for (int i 1; i < nums.length; i) {dp[i] Math.max(nums[i], d…

Orchestrator源码解读4-计划内切换

计划内切换 Graceful master promotion 通常因为升级&#xff0c;服务器为何等原因&#xff0c;需要按照计划将主库迁移到其他实例的情况。 计划内切换的拓扑结构改变的流程如下&#xff1a; orchestrator自己选或用户自己指定一个从库实例为新主库orchestrator将其他从库ch…

【江科大STM32合集】day2按键控制LED光敏传感器控制峰鸣器

【STM32合集】day2按键控制LED&光敏传感器控制峰鸣器 电路基础c语言基础main.ckey.c结果 实现一个键开关灯实验结果避坑 电路基础 运算放大器-在江科大51单片机b站视频&#xff08;AD/DA&#xff09;复习 原理&#xff1a;两个极端 同相输入端电压 》反相输入端 电压输出最…

【leetcode题解C++】707.设计链表

你可以选择使用单链表或者双链表&#xff0c;设计并实现自己的链表。 单链表中的节点应该具备两个属性&#xff1a;val 和 next 。val 是当前节点的值&#xff0c;next 是指向下一个节点的指针/引用。 如果是双向链表&#xff0c;则还需要属性 prev 以指示链表中的上一个节点…

Git_01_push失败之解决办法

从本地服务器向云端服务器提交代码的过程中&#xff0c;碰到了以下问题&#xff1a; 提示账号没有push权限 rootlocalhost:~/repo/$ git push qnx HEAD:refs/for/develop Counting objects: 29, done. Delta compression using up to 32 threads. Compressing objects: 100% …

如何利用小程序介绍公司品牌形象?

企业小程序的建设对于现代企业来说已经成为了一项必不可少的工作。随着移动互联网的快速发展&#xff0c;越来越多的职场人士和创业老板希望通过小程序来提升企业形象&#xff0c;增强与用户的互动&#xff0c;实现更好的商业效果。在这个过程中&#xff0c;使用第三方制作平台…

排序算法-冒泡排序(含C语言代码示例)

一、算法介绍 冒泡排序是一种简单的排序算法&#xff0c;其核心思想是重复地遍历待排序列表&#xff0c;比较并交换相邻元素&#xff0c;使得较大的元素逐渐“冒泡”到列表的末尾&#xff0c;而较小的元素则逐渐上浮至列表的前端。该算法的名字源于类比元素的移动过程&#xff…

Java零基础教学文档第五篇:jQuery

今日新篇章 【jQuery】 【主要内容】 jQuery简介 jQuery安装 jQuery语法 jQuery选择器 jQuery事件处理 jQueryDOM操作 jQuery元素遍历 jQuery过滤 jQuery其它方法 【学习目标】 1.jQuery简介 1.1 jQuery简介 jQuery 库可以通过一行简单的标记被添加到网页中。 1.…

vue使用el-input监听不了回车事件解决方法

无法监听回车事件 <el-input v-model"password" type"password" placeholder"密码" keyup.enter"onLogin"></el-input> 在keyup.enter后加上’.native’ <el-input v-model"password" type"password…

国内镜像:极速下载编译WebRTC源码(For Android/Linux/IOS)(二十四)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只…

C语言实现双向循环链表

1.mj版本的双向循环链表(虚拟头节点) #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #define ELEMENT_NOT_FOUND -1 // 设置一个节点类 typedef struct Node {// 数据域int data;// 指针域struct Node* pre;struct Node* next; }Node; // 初…

Vue学习笔记5-- nextTick | Vue封装的过渡与动画

一、nextTick(tick-工作&#xff0c;起作用&#xff1b;下次起作用&#xff09; 语法&#xff1a; this.$nextTick(回调函数&#xff09;作用&#xff1a;在下一次DOM更新结束后执行其指定的回调。什么时候用&#xff1a;当改变数据后&#xff0c;要基于更新后的新DOM进行某些…

Linux修改文件名的三种方法分享

在Linux系统中&#xff0c;修改文件名是日常工作中常见的操作之一。无论是批量重命名文件还是修改单个文件名&#xff0c;掌握合适的方法可以提高工作效率。本文将分享三种常用的Linux修改文件名的方法&#xff0c;帮助您轻松应对文件管理任务。 方法一&#xff1a;使用mv命令 …

面试百问:Redis常见的故障以及发生场景

作为一个测试同学&#xff0c;被测系统架构中有使用到redis吗&#xff1f;对redis常见的故障有了解吗&#xff1f;又是如何进行测试的呢&#xff1f; 针对常见的redis面试问题&#xff0c;怎样才算一个高质量的回答呢&#xff0c;回答思路一般包括 问题的类型是什么&#xff…