深度学习-标注文件处理(txt批量转换为json文件)

接上篇,根据脚本可将coco128的128张图片,按照比例划分成训练集、测试集、验证集,同时生成相应的标注的labels文件夹,最近再看实例分离比较火的mask rcnn模型,准备进行调试但由于实验室算力不足,网上自己租的2080ti马,传整个coco2017实在是太慢了,检索了一下没有开源的部分coco2017数据集,于是我想到将coco128的数据转化成json文件,便于新手进行debug,节约时间和算力。
在这里插入图片描述
数据集结构准备如上(在我上篇博文的基础上新增classes.txt文件和annotations文件夹)
脚本如下:

import os
import json
import cv2
import random
import time
from PIL import Imagecoco_format_save_path='/root/autodl-tmp/deep-learning-for-image-processing-master/pytorch_object_detection/mask_rcnn/data/annotations/'   #要生成的标准coco格式标签所在文件夹
yolo_format_classes_path='/root/autodl-tmp/deep-learning-for-image-processing-master/pytorch_object_detection/mask_rcnn/data/train/classes.txt'     #类别文件,一行一个类
yolo_format_annotation_path='/root/autodl-tmp/deep-learning-for-image-processing-master/pytorch_object_detection/mask_rcnn/data/train/labels/'  #yolo格式标签所在文件夹
img_pathDir='/root/autodl-tmp/deep-learning-for-image-processing-master/pytorch_object_detection/mask_rcnn/data/train/images/'    #图片所在文件夹with open(yolo_format_classes_path,'r') as fr:                               #打开并读取类别文件lines1=fr.readlines()
# print(lines1)
categories=[]                                                                 #存储类别的列表
for j,label in enumerate(lines1):label=label.strip()categories.append({'id':j+1,'name':label,'supercategory':'None'})         #将类别信息添加到categories中
# print(categories)write_json_context=dict()                                                      #写入.json文件的大字典
write_json_context['info']= {'description': '', 'url': '', 'version': '', 'year': 2024, 'contributor': '纯粹ss', 'date_created': '2024-01-12'}
write_json_context['licenses']=[{'id':1,'name':None,'url':None}]
write_json_context['categories']=categories
write_json_context['images']=[]
write_json_context['annotations']=[]#接下来的代码主要添加'images'和'annotations'的key值
imageFileList=os.listdir(img_pathDir)                                           #遍历该文件夹下的所有文件,并将所有文件名添加到列表中
for i,imageFile in enumerate(imageFileList):imagePath = os.path.join(img_pathDir,imageFile)                             #获取图片的绝对路径image = Image.open(imagePath)                                               #读取图片,然后获取图片的宽和高W, H = image.sizeimg_context={}                                                              #使用一个字典存储该图片信息#img_name=os.path.basename(imagePath)                                       #返回path最后的文件名。如果path以/或\结尾,那么就会返回空值img_context['file_name']=imageFileimg_context['height']=Himg_context['width']=Wimg_context['date_captured']='2024.1.12'img_context['id']=i                                                         #该图片的idimg_context['license']=1img_context['color_url']=''img_context['flickr_url']=''write_json_context['images'].append(img_context)                            #将该图片信息添加到'image'列表中txtFile=imageFile[:12]+'.txt'                                               #获取该图片获取的txt文件with open(os.path.join(yolo_format_annotation_path,txtFile),'r') as fr:lines=fr.readlines()                                                   #读取txt文件的每一行数据,lines2是一个列表,包含了一个图片的所有标注信息for j,line in enumerate(lines):bbox_dict = {}                                                          #将每一个bounding box信息存储在该字典中# line = line.strip().split()# print(line.strip().split(' '))class_id,x,y,w,h=line.strip().split(' ')                                          #获取每一个标注框的详细信息class_id,x, y, w, h = int(class_id), float(x), float(y), float(w), float(h)       #将字符串类型转为可计算的int和float类型xmin=(x-w/2)*W                                                                    #坐标转换ymin=(y-h/2)*Hxmax=(x+w/2)*Wymax=(y+h/2)*Hw=w*Wh=h*Hbbox_dict['id']=i*10000+j                                                         #bounding box的坐标信息bbox_dict['image_id']=ibbox_dict['category_id']=class_id+1                                               #注意目标类别要加一bbox_dict['iscrowd']=0height,width=abs(ymax-ymin),abs(xmax-xmin)bbox_dict['area']=height*widthbbox_dict['bbox']=[xmin,ymin,w,h]bbox_dict['segmentation']=[[xmin,ymin,xmax,ymin,xmax,ymax,xmin,ymax]]write_json_context['annotations'].append(bbox_dict)                               #将每一个由字典存储的bounding box信息添加到'annotations'列表中name = os.path.join(coco_format_save_path,"train"+ '.json')
with open(name,'w') as fw:                                                                #将字典信息写入.json文件中json.dump(write_json_context,fw,indent=2)

注意这里要新建classes.txt文件夹,每一行表示一个物体类别,编号与yolo格式的标注txt文件对应,我新建的coco数据集的classes.txt文件夹如下:

person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
hangbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
mirror
dining table
window
desk
toilet
door
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
blender
book
clock

(txt文件发出来是因为查了一下发现网上给出的coco类别与编码都是图片,由于自己手欠还打了两遍,发出来大家可以直接用)
注意脚本运行时候的一些设置:

脚本关于获取图片对应txt文件时,需要名字对应,我是编号为000000000009.txt,因此这里设置的是12,表示前12位,感觉也可以用文件名末尾.jpg替换为.txt来实现。
最后生成的coco格式的json文件如下:

{"info": {"description": "","url": "","version": "","year": 2024,"contributor": "\u7eaf\u7cb9ss","date_created": "2024-01-12"},"licenses": [{"id": 1,"name": null,"url": null}],"categories": [{"id": 1,"name": "person","supercategory": "None"},{"id": 2,"name": "bicycle","supercategory": "None"},....."images": [{"file_name": "000000000030.jpg","height": 428,"width": 640,"date_captured": "2024.1.12","id": 0,"license": 1,"color_url": "","flickr_url": ""},......."annotations": [{"id": 0,"image_id": 0,"category_id": 59,"iscrowd": 0,"area": 82611.7361856,"bbox": [204.86016,31.019727999999994,254.88,324.12012],"segmentation": [[204.86016,31.019727999999994,459.74016,31.019727999999994,459.74016,355.13984800000003,204.86016,355.13984800000003]]},{"id": 1,"image_id": 0,"category_id": 76,"iscrowd": 0,"area": 32489.62928639999,"bbox": [237.56032,155.80997600000003,166.4,195.25017599999998],"segmentation": [[237.56032,155.80997600000003,403.96031999999997,155.80997600000003,403.96031999999997,351.060152,237.56032,351.060152]]},{

生成json文件后可以用脚本来测试,这里借用博主太阳花的小绿豆的脚本:

import os
from pycocotools.coco import COCO
from PIL import Image, ImageDraw
import matplotlib.pyplot as pltjson_path = "/root/autodl-tmp/deep-learning-for-image-processing-master/pytorch_object_detection/mask_rcnn/data/annotations/train.json"
img_path = "/root/autodl-tmp/deep-learning-for-image-processing-master/pytorch_object_detection/mask_rcnn/data/train/images"# load coco data
coco = COCO(annotation_file=json_path)# get all image index info
ids = list(sorted(coco.imgs.keys()))
print("number of images: {}".format(len(ids)))# get all coco class labels
coco_classes = dict([(v["id"], v["name"]) for k, v in coco.cats.items()])# 遍历前三张图像
for img_id in ids[:20]:# 获取对应图像id的所有annotations idx信息ann_ids = coco.getAnnIds(imgIds=img_id)# 根据annotations idx信息获取所有标注信息targets = coco.loadAnns(ann_ids)# get image file namepath = coco.loadImgs(img_id)[0]['file_name']# read imageimg = Image.open(os.path.join(img_path, path)).convert('RGB')draw = ImageDraw.Draw(img)# draw box to imagefor target in targets:x, y, w, h = target["bbox"]x1, y1, x2, y2 = x, y, int(x + w), int(y + h)draw.rectangle((x1, y1, x2, y2))draw.text((x1, y1), coco_classes[target["category_id"]])# show imageplt.imshow(img)plt.show()

可以可视化数据集图片的标注结果:
在这里插入图片描述
在这里插入图片描述

多个目标检测框都可以正确生成

说明我们生成的json文件是正确的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/628343.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM知识总结(持续更新)

这里写目录标题 java内存区域程序计数器虚拟机栈本地方法栈堆方法区运行时常量池 对象的创建 java内存区域 Java 虚拟机在执行 Java 程序的过程中会把它管理的内存划分成若干个不同的数据区域: 程序计数器虚拟机栈本地方法栈堆方法区 程序计数器 记录下一条需要…

【ArcGIS遇上Python】ArcGIS Python批量筛选多个shp中指定字段值的图斑(以土地利用数据为例)

文章目录 一、案例分析二、提取效果二、代码运行效果三、Python代码四、数据及代码下载一、案例分析 以土地利用数据为例,提取多个shp数据中的旱地。 二、提取效果 原始土地利用数据: 属性表: 提取的旱地:(以图层名称+地类名称命名)

基于python舆情分析可视化系统+情感分析+爬虫+机器学习(源码)✅

大数据毕业设计:Python招聘数据采集分析可视化系统✅ 毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏) 毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总 🍅感兴趣的可以先收藏起来&…

Python 自学(八) 之模块

目录 1. import语句导入模块 P206 2. from ... import 语句导入模块 P207 3. 模块的搜索目录 sys.path P209 4. 以主程序的形式执行 __name__ P212 5. python中的包 P213 1. import语句导入模块 P206 同一目录下&…

响应式Web开发项目教程(HTML5+CSS3+Bootstrap)第2版 第1章 HTML5+CSS3初体验 项目1-1 三栏布局页面

项目展示 三栏布局是一种常用的网页布局结构。 除了头部区域、底部区域外,中间的区域(主体区域)划分成了三个栏目,分别是左侧边栏、内容区域和右侧边栏,这三个栏目就构成了三栏布局。当浏览器的宽度发声变化时&#x…

【java八股文】之JVM基础篇

【java八股文】之JVM基础篇-CSDN博客 【java八股文】之MYSQL基础篇-CSDN博客 【java八股文】之Redis基础篇-CSDN博客 【java八股文】之Spring系列篇-CSDN博客 【java八股文】之分布式系列篇-CSDN博客 【java八股文】之多线程篇-CSDN博客 【java八股文】之JVM基础篇-CSDN博…

设计模式-委托模式

设计模式专栏 模式介绍模式特点应用场景委托模式在GUI编程场景的应用代码示例Java实现委托模式Python实现委托模式 委托模式在spring中的应用 模式介绍 委托模式是一种软件设计模式,其中一个对象(委托对象)将某些操作委托给另一个对象&#…

css深度选择器 /deep/

一、/deep/的含义和使用 /deep/ 是一种 CSS 深度选择器,也被称为深度组合器或者阴影穿透组合器,主要用在 Web 组件样式封装中。 在 Vue.js 或者 Angular 中,使用了样式封装技术使得组件的样式不会影响到全局,也就是说组件内部的…

白码CRM快速实现报价转订单功能

某crm项目已经做到销售模块了,销售模块实现了从报价到销售单,再到财务模块的应收流程。但使用过程中发现不好用的地方:报价通过后客户下单,销售相关人员又要重新录入数据一样的销售单,觉得这样的操作比较繁琐&#xff…

【STM32】HAL库的STOP低功耗模式UART串口唤醒,第一个接收字节出错的问题(已解决)

【STM32】HAL库的STOP低功耗模式UART串口唤醒,第一个接收字节出错的问题(已解决) 文章目录 BUG复现调试代码推测原因及改进方案尝试中断时钟供电外设唤醒方式校验码硬件问题 切换到STOP0模式尝试结论和猜想解决方案附录:Cortex-M…

说清楚Kubernetes、Docker、Dockershim、Containerd、runC、CRI、OCI的关系

Kubernetes v1.20版本 的 release note 里说 deprecated docker。并且在后续版本 v1.24 正式删除了 dockershim 组件,这对我们有什么影响呢?Kubernetes 1.20: The Raddest Release | Kubernetes 为了搞明白这件事情,以及理解一系列容器名词 …

仿真机器人-深度学习CV和激光雷达感知(项目2)day01【项目介绍与环境搭建】

文章目录 前言项目介绍功能与技术简介硬件要求环境配置虚拟机运行项目demo 前言 💫你好,我是辰chen,本文旨在准备考研复试或就业 💫本文内容是我为复试准备的第二个项目 💫欢迎大家的关注,我的博客主要关注…

03.neuvector之组的划分逻辑

neuvector之组的划分逻辑 原文链接,欢迎大家关注我的github账号 一、组的定义 NeuVector 会自动从正在运行的应用程序中创建组。这些组以前缀‘nv‘开头。您也可以使用 CRD 或 REST API 手动添加它们,并且可以在任何模式下创建、发现、监视或保护。网络和响应规则需…

现阶段Python和Java哪个更吃香?

现阶段Python和Java哪个更吃香? 在开始前我有一些资料,是我根据网友给的问题精心整理了一份「Java的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!&…

论文阅读 Vision Transformer - VIT

文章目录 1 摘要1.1 核心 2 模型架构2.1 概览2.2 对应CV的特定修改和相关理解 3 代码4 总结 1 摘要 1.1 核心 通过将图像切成patch线形层编码成token特征编码的方法,用transformer的encoder来做图像分类 2 模型架构 2.1 概览 2.2 对应CV的特定修改和相关理解 解…

一个小程序跳转到另一个小程序中如何实现

小程序 保证两个小程序是一样的主体才可以跳转。怎么知道是不是同样的主体呢&#xff1f; 小程序的后台管理-设置-基本设置-基本信息。查看主体信息。 跳转 <button clicktoOtherMini()>跳转到另一个小程序</button> function toOtherMini(){wx.navigateToMini…

GPT实战系列-简单聊聊LangChain搭建本地知识库准备

GPT实战系列-简单聊聊LangChain搭建本地知识库准备 LangChain 是一个开发由语言模型驱动的应用程序的框架&#xff0c;除了和应用程序通过 API 调用&#xff0c; 还会&#xff1a; 数据感知 : 将语言模型连接到其他数据源 具有代理性质 : 允许语言模型与其环境交互 LLM大模型…

smartgit选择30天试用后需要输入可执行文件

突然有一天smartgit提示到期了&#xff0c;我按照以往那样删除license和preferences文件后&#xff0c;选择30天试用&#xff0c;弹出了需要选择git可执行文件。 我尝试选择了我的git.exe&#xff0c;发现根本不行&#xff0c;提示让我执行下git --version 执行过后提示我的.gi…

数据结构及其简单实现

栈 先进后出栈顶操作&#xff08;栈顶进&#xff0c;栈顶出&#xff09; class Strock {constructor() {this.data [] // 可以是对象this.count 0}push(item) {// 实现有三种// 1. this.data.push(item); // 2. this.data[this.data.length] item; this.count// 3this.dat…

CentOS 7 权限管理实战指南:用户组管理相关命令详解

前言 深入了解 CentOS 7 用户组管理的命令&#xff0c;掌握关键的用户组操作技巧。从创建和删除用户组、修改组属性&#xff0c;到设置组密码和管理组成员&#xff0c;这篇文章详细介绍了 CentOS 7 系统下常用的用户组管理命令&#xff0c;为读者小伙伴提供了实用而全面的指南…