【题干】
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache
类:
LRUCache(int capacity)
以 正整数 作为容量capacity
初始化 LRU 缓存int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。void put(int key, int value)
如果关键字key
已经存在,则变更其数据值value
;如果不存在,则向缓存中插入该组key-value
。如果插入操作导致关键字数量超过capacity
,则应该 逐出 最久未使用的关键字。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
【思路】
- 首先从数据结构的角度来想,想要方便地改变元素排序,选择链表比较合适,且可能频繁涉及到节点的移除,考虑使用双链表,最后还想要在常数时间取放,我们选择用哈希表来建立key和链表节点的映射。C++中没有像py和java那样提供现成的链表+哈希表结构,本题显然是希望我们来手撕一个。
- 从数据的操作来看,我们可以把常见的可复用的动作先提取出来封装成函数,具体来说有五种情形:get且存在、get但不存在、put且存在、put且不存在且不超额、put且存在且超额;其中涉及到的操作有:将刚刚被使用的元素提到当前最不可能被删除位置(约定头部)(move),在头部加新节点(add),在尾部删节点(remove)。
- 然后就只剩一些分支条件判断,链表指针的操作了,不做赘述。
【题解】
struct DLinkedNode {int key, value;DLinkedNode* prev;DLinkedNode* next;DLinkedNode(): key(0), value(0), prev(nullptr), next(nullptr) {}DLinkedNode(int _key, int _value): key(_key), value(_value), prev(nullptr), next(nullptr) {}
};class LRUCache {
private:unordered_map<int, DLinkedNode*> cache;DLinkedNode* head;DLinkedNode* tail;int size;int capacity;public:LRUCache(int _capacity): capacity(_capacity), size(0) {// 使用伪头部和伪尾部节点head = new DLinkedNode();tail = new DLinkedNode();head->next = tail;tail->prev = head;}int get(int key) {if (!cache.count(key)) {return -1;}// 如果 key 存在,先通过哈希表定位,再移到头部DLinkedNode* node = cache[key];moveToHead(node);return node->value;}void put(int key, int value) {if (!cache.count(key)) {// 如果 key 不存在,创建一个新的节点DLinkedNode* node = new DLinkedNode(key, value);// 添加进哈希表cache[key] = node;// 添加至双向链表的头部addToHead(node);++size;if (size > capacity) {// 如果超出容量,删除双向链表的尾部节点DLinkedNode* removed = removeTail();// 删除哈希表中对应的项cache.erase(removed->key);// 防止内存泄漏delete removed;--size;}}else {// 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部DLinkedNode* node = cache[key];node->value = value;moveToHead(node);}}void addToHead(DLinkedNode* node) {node->prev = head;node->next = head->next;head->next->prev = node;head->next = node;}void removeNode(DLinkedNode* node) {node->prev->next = node->next;node->next->prev = node->prev;}void moveToHead(DLinkedNode* node) {removeNode(node);addToHead(node);}DLinkedNode* removeTail() {DLinkedNode* node = tail->prev;removeNode(node);return node;}
};