文章内容:
- 读取棋盘格图片进行标定
- 生成棋盘格图片
- 保存标定后的内容
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <fstream>using namespace cv;
using namespace std;int main()
{std::vector<cv::String> images;std::string path = "./images/*.jpg";cv::glob(path, images);if(images.size() == 0){cout << "path is error" << endl;return 0;}int image_count = 0; Size image_size; Size board_size = Size(9, 6); vector<Point2f> image_points_buf; vector<vector<Point2f>> image_points_seq; for (int i = 0; i < images.size(); i++){image_count++;cout << "image_count: " << image_count << endl;Mat imageInput = cv::imread(images[i]);if(imageInput.empty()){cout << "read error" << endl;return 0;}if (image_count == 1){image_size.width = imageInput.cols;image_size.height = imageInput.rows;cout << "image_size.width = " << image_size.width << endl;cout << "image_size.height = " << image_size.height << endl;}if (0 == findChessboardCorners(imageInput, board_size, image_points_buf)){cout << "can not find chessboard corners!\n"; exit(1);}else{Mat view_gray;cvtColor(imageInput, view_gray, COLOR_RGB2GRAY);find4QuadCornerSubpix(view_gray, image_points_buf, Size(5, 5)); image_points_seq.push_back(image_points_buf); drawChessboardCorners(view_gray, board_size, image_points_buf, false); imshow("Camera Calibration", view_gray); waitKey(500);}}int total = image_points_seq.size();cout << "total = " << total << endl;int CornerNum = board_size.width * board_size.height; for (int ii = 0 ; ii < total ; ii++){if (0 == ii % CornerNum) {int i = -1;i = ii / CornerNum;int j = i + 1;cout << "--> 第 " << j << "图片的数据 --> : " << endl;}if (0 == ii % 3) {cout << endl;}else{cout.width(10);}cout << " -->" << image_points_seq[ii][0].x;cout << " -->" << image_points_seq[ii][0].y;}cout << "角点提取完成!\n";cout << "开始标定………………";Size square_size = Size(10, 10); vector<vector<Point3f>> object_points; Mat cameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); vector<int> point_counts; Mat distCoeffs = Mat(1, 5, CV_32FC1, Scalar::all(0)); vector<Mat> tvecsMat; vector<Mat> rvecsMat; int i, j, t;for (t = 0; t < image_count; t++){vector<Point3f> tempPointSet;for (i = 0; i < board_size.height; i++){for (j = 0; j < board_size.width; j++){Point3f realPoint;realPoint.x = i * square_size.width;realPoint.y = j * square_size.height;realPoint.z = 0;tempPointSet.push_back(realPoint);}}object_points.push_back(tempPointSet);}for (i = 0; i < image_count; i++){point_counts.push_back(board_size.width * board_size.height);}calibrateCamera(object_points, image_points_seq, image_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, 0);cout << "标定完成!\n";cout << "开始评价标定结果………………\n";double total_err = 0.0; double err = 0.0; vector<Point2f> image_points2; cout << "\t每幅图像的标定误差:\n";cout << "每幅图像的标定误差:\n";for (i = 0; i < image_count; i++){vector<Point3f> tempPointSet = object_points[i];projectPoints(tempPointSet, rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points2);vector<Point2f> tempImagePoint = image_points_seq[i];Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2);for (int j = 0 ; j < tempImagePoint.size(); j++){image_points2Mat.at<Vec2f>(0, j) = Vec2f(image_points2[j].x, image_points2[j].y);tempImagePointMat.at<Vec2f>(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);}err = norm(image_points2Mat, tempImagePointMat, NORM_L2);total_err += err /= point_counts[i];std::cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;}std::cout << "总体平均误差:" << total_err / image_count << "像素" << endl;cout << "总体平均误差:" << total_err / image_count << "像素" << endl << endl;std::cout << "评价完成!" << endl;std::cout << "开始保存定标结果………………" << endl;Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); cout << "相机内参数矩阵:" << endl;cout << cameraMatrix << endl << endl;cout << "畸变系数:\n";cout << distCoeffs << endl << endl << endl;for (int i = 0; i < image_count; i++){cout << "第" << i + 1 << "幅图像的旋转向量:" << endl;cout << rvecsMat[i] << endl;Rodrigues(rvecsMat[i], rotation_matrix);cout << "第" << i + 1 << "幅图像的旋转矩阵:" << endl;cout << rotation_matrix << endl;cout << "第" << i + 1 << "幅图像的平移向量:" << endl;cout << tvecsMat[i] << endl << endl;}std::cout << "完成保存" << endl;cout << endl;Mat mapx = Mat(image_size, CV_32FC1);Mat mapy = Mat(image_size, CV_32FC1);Mat R = Mat::eye(3, 3, CV_32F);std::cout << "保存矫正图像" << endl;string imageFileName;std::stringstream StrStm;for (int i = 0 ; i < image_count ; i++){std::cout << "Frame #" << i + 1 << "..." << endl;initUndistortRectifyMap(cameraMatrix, distCoeffs, R, cameraMatrix, image_size, CV_32FC1, mapx, mapy);StrStm.clear();cout << images[i] << endl;Mat imageSource = imread(images[i]);Mat newimage = imageSource.clone();remap(imageSource, newimage, mapx, mapy, INTER_LINEAR);StrStm.clear();StrStm << i + 1;StrStm >> imageFileName;imageFileName += "_d.jpg";imwrite(imageFileName, newimage);}std::cout << "保存结束" << endl;
}