任务13:使用MapReduce对天气数据进行ETL(获取各基站ID)

任务描述

知识点

  • 天气数据进行ETL

重  点

  • 掌握MapReduce程序的运行流程
  • 熟练编写MapReduce程序
  • 使用MapReduce进行ETL

内  容

  • 编写MapReduce程序
  • 编写Shell脚本,获取MapReduce程序的inputPath
  • 将生成的inputPath文件传入到Windows环境
  • 运行MapReduce程序对天气数据进行ETL处理

任务指导

1. 准备2000-2022年气象数据

(如在任务12中,按照手册已自行处理好2000-2022年的所有气象数据,也可跳过此步骤,使用自己处理好的数据文件即可,但需要在后续步骤中注意数据路径的问题)

先前按照任务12处理了2021-2022年数据,在后续气象预测部分任务需要2000-2022年的数据作为支持,所以现将处理后的(解压后)2000年-2022年的气象数据进行提供,可通过下述的URL下载地址进行下载

数据集路径:

格式:url/dataSet/systemLib/b3084be184684ee18f3b00b048bab0cc.zip,url参见实验窗口右侧菜单“实验资源下载”。

例如:https://staticfile.eec-cn.com/dataSet/systemLib/b3084be184684ee18f3b00b048bab0cc.zip

  • 在master机器的/home路径下载数据集
  • 解压数据集
  • 在/home/china_data目录中包含了2000-2022年,22年间的中国各个基站的气象数据

  • 在每个文件夹下均已将气象数据文件解压完成

使用MapReduce对天气数据进行预处理,并在数据文件中添加对应基站ID,并将原来字段间的分隔符改为使用逗号分隔,以便于大Hive中使用该数据集。

2. 使用MapReduce对数据进行ETL

当前在数据集中不包含基站编号字段,每个基站的编号体现在各个文件名的前5位,例如在“450010-99999-2000”文件中包含的是编号为“45001”的基站数据,所以需要将各个基站的编号添加到对应的数据文件中,并且在各个文件中每个字段之间的分隔符也是不一致的,所以也需要对数据进行清理,由于数据量较大,可以考虑使用MapReduce进行数据清理的工作。

  • 创建Maven项目:china_etl
  • 编写MapReduce程序
    • ChinaMapper:读取数据,对数据添加stn(基站ID)字段,并进行格式化处理
    • ChinaReducer:对处理后的数据进行输出
    • ChinaDriver:MapReduce程序的驱动类
  • 在master机器编写Shell脚本获取MapReduce程序的inputPath

  • 将生成的inputPath文件传入到Windows环境
  • 在Windows运行MapReduce程序
  • 程序运行完成,进入master机器查看结果

  • 数据格式说明:
基站编号时间温度露点温度气压风向风速云量1小时雨量6小时雨量
5999720221231212742501013370205-9999-9999

任务实现

1. 准备2000-2022年气象数据

(如在任务12中,按照手册已自行处理好2000-2022年的所有气象数据,也可跳过此步骤,使用自己处理好的数据文件即可,但需要在后续步骤中注意数据路径的问题)

先前按照任务12处理了2021-2022年数据,在后续气象预测部分任务需要2000-2022年的数据作为支持,所以现将处理后的(解压后)2000年-2022年的气象数据进行提供,可通过下述的URL下载地址进行下载

数据集路径:

格式:url/dataSet/systemLib/b3084be184684ee18f3b00b048bab0cc.zip,url参见实验窗口右侧菜单“实验资源下载”。

例如:https://staticfile.eec-cn.com/dataSet/systemLib/b3084be184684ee18f3b00b048bab0cc.zip

  • 在master机器的/home路径下载数据集
# cd /home
# wget https://staticfile.eec-cn.com/dataSet/systemLib/b3084be184684ee18f3b00b048bab0cc.zip
  • 解压数据集
# unzip /home/b3084be184684ee18f3b00b048bab0cc.zip
  • 在/home/china_data目录中包含了2000-2022年,22年间的中国各个基站的气象数据

  • 在每个文件夹下均已将气象数据文件解压完成

  • 将下载后的数据集上传至HDFS中
  • 将2000-2022年的所有气象数据上传至HDFS的/china目录中
# hadoop fs -mkdir /china
# hadoop fs -put /home/china_data/* /china

天气的格式如下:

NCDC天气的格式说明:

气象要素包括:气温、气压、露点、风向风速、云量、降水量等。

  • 例如:

  • 各字段的含义如下:
时间温度露点温度气压风向风速云量1小时雨量6小时雨量
202101010080-941028550601-9999-9999

当前在数据集中不包含基站编号字段,每个基站的编号体现在各个文件名的前5位,例如在“450010-99999-2000”文件中包含的是编号为“45001”的基站数据,所以需要将各个基站的编号添加到对应的数据文件中,并且在各个文件中每个字段之间的分隔符也是不一致的,所以也需要对数据进行清理,由于数据量较大,可以考虑使用MapReduce进行数据清理的工作。

2. 使用MapReduce对数据进行ETL

使用MapReduce对天气数据进行ETL流程如下:

  • 打开IDEA,如先前创建过项目,需点击File --> Close Project返回IDEA初始界面

  • 点击New Project新建项目

  • 创建Maven项目:china_etl

  • 打开File --> Settings,按照之前的方式配置Maven

  • 修改pom.xml文件,在标识位置填写<dependencies>标签中的内容,下载项目所需依赖

  • <dependencies>标签内容如下:
<dependencies>    <dependency>        <groupId>org.apache.hadoop</groupId>        <artifactId>hadoop-client</artifactId>        <version>2.9.2</version>    </dependency>
</dependencies>
  • 依赖下载完成后,将默认生成在src/main/java/com的Main类删除

  • 在src/main/java/com包下创建Mapper类:ChinaMapper.java

本次MapReduce任务的主要处理逻辑在Map函数中,在Map中获取当前正在处理的文件信息,通过文件信息获取相应的文件名,然后获取到文件名的前五位,前五位则是每个基站对应的基站编号,然后获取到数据文件中的每条数据并进行分割,分割后根据索引获取所需的数据,最后通过","对数据进行分隔,作为每个字段数据的新分隔符,根据所需重新将数据进行拼接

package com;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class ChinaMapper extends Mapper<LongWritable, Text,Text, NullWritable> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//         获取当前map正在处理的文件信息InputSplit inputSplit = (InputSplit) context.getInputSplit();
//         获取文件名,例如:当前获取到“450010-99999-2000”String fileName = inputSplit.toString().split("/")[5];NullWritable val = NullWritable.get();
//        取出基站编号,例如:“45001”String stn = fileName.substring(0,5);
//     System.out.println(stn);/**     获取所需字段year=[]   #年month=[]  #月day=[]    #日hour=[]   #时间temp=[]   #温度dew_point_temp=[]  #露点温度pressure=[]        #气压wind_direction=[]   #风向wind_speed=[]       #风速clouds=[]          #云量precipitation_1=[]   #1小时降水量precipitation_6=[]   #6小时降水量
*/
//     获取输入的每一条数据String values = value.toString();
//     通过分隔符进行分割String[] lines = values.split("\\s+");String year = lines[0];String month = lines[1];String day = lines[2];String hour = lines[3];String temp = lines[4];String dew_point_temp = lines[5];String pressure = lines[6];String wind_direction = lines[7];String wind_speed = lines[8];String cloud=lines[9];String precipitation_1 = lines[10];String precipitation_6 = lines[11];
//     使用“,”对每条数据进行拼接,每条数据的分隔符设置为","String line = stn+","+year+","+month+","+day+","+hour+","+temp+","+dew_point_temp+","+pressure+","+wind_direction+","+wind_speed+","+cloud+","+precipitation_1+","+precipitation_6;System.out.println(line);
//     每条数据作为key进行输出context.write(new Text(line),val);}
}
  • 在src/main/java/com包下创建Reducer类:ChinaReducer.java
package com;import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class ChinaReducer extends Reducer<Text,NullWritable,Text,NullWritable> {@Overrideprotected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {NullWritable val = NullWritable.get();// 获取keyText outLine = key;context.write(outLine,val);}
}
  • 在src/main/java/com包下创建Driver类: ChinaDriver.java
package com;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;public class ChinaDriver {public static void main(String[] args) {Configuration conf = new Configuration();Job job = null;try {// 读取filename文件内容获取inputpathBufferedReader br = new BufferedReader(new FileReader("C:\\installed\\filename.txt"));String line = null;ArrayList list = new ArrayList();while((line=br.readLine())!=null){list.add(line);}Path[] inputPath = new Path[list.size()];for(int i = 0;i< inputPath.length;i++){inputPath[i] = new Path(list.get(i).toString());System.out.println(inputPath[i]);}job = Job.getInstance(conf);job.setJarByClass(ChinaDriver.class);job.setJobName("ChinaDriver");
//         设置Mapper类job.setMapperClass(ChinaMapper.class);
//         设置Reducer类job.setReducerClass(ChinaReducer.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(NullWritable.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);
//         设置输入路径FileInputFormat.setInputPaths(job, inputPath);
//         设置输出路径FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/china_all/"));System.exit(job.waitForCompletion(true) ? 0 : 1);} catch (IOException e) {e.printStackTrace();} catch (ClassNotFoundException e) {e.printStackTrace();} catch (InterruptedException e) {e.printStackTrace();}}
}
  • 编写完成后,进入master机器

由于本次MapRedcue任务需要处理2000-2022年的数据,每个年份的数据都保存在一个以年份命名的文件夹下,所以MapReduce需要读取22个文件夹下的所有数据,因此在运行MapReduce程序前,需要编写一个Shell脚本以生成MapReduce的inputPath文件,在该文件中包含所有需要处理的数据路径(该操作类似任务12中的generate_input_list.sh脚本

  • 在master机器的/home/shell目录下,编写getHDFSfile.sh脚本,以生成MapReduce的inputPath文件
# vim /home/shell/getHDFSfile.sh
  • 脚本内容如下:
#/bin/bash
rm -rf /home/filename.txt
# file = echo `hdfs dfs -ls /china | awk -F ' ' '{print $8}'`
for line in `hdfs dfs -ls /china | awk -F ' ' '{print $8}'`
dofilename="hdfs://master:9000$line"echo -e "$filename" >> /home/filename.txt
done
  • 为Shell脚本赋予执行权限
# chmod u+x /home/shell/getHDFSfile.sh
  • 运行Shell脚本,生成inputPath
# /home/shell/getHDFSfile.sh
  • 脚本运行完成,在/home目录下会生成一个filename.txt文件,在文件中包含所有需要处理的路径信息
  • 查看/home/filename.txt文件
# cat /home/filename.txt 

  • filename.txt文件生成后,将其通过filezilla工具传入到Windows环境的C:\installed目录
  • 进入Windows环境,打开filezilla工具,filezilla需要配置master的主机名(IP地址)、用户名、密码以及端口;

  • 可通过右侧工具栏,获取master机器的相关信息并将其进行填入

  • 配置完成后,点击快速连接master机器
  • 在左侧拦中是本地Windows环境的文件管理器,右侧是连接的远程Linux(master)机器文件管理器

  • 在Windows文件管理器,进入C:\installed目录,在右侧master机器中进入/home目录,找到生成的filename.txt文件,将其从master机器中拖拽到Windows机器

  • 右键ChinaDriver,点击Run 'ChinaDriver.main()'运行MapReduce程序

  • 控制台显示数据

进入master机器,查看运行结果最后5行数据:

# hadoop fs -cat /china_all/* | tail -5

数据格式说明:

基站编号时间温度露点温度气压风向风速云量1小时雨量6小时雨量
5999720221231212742501013370205-9999-9999

上一个任务下一个任务

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/626048.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AWS边缘媒体安全交付方案

企业如何在AWS上的边缘站点&#xff0c;安全的将优质视频内容交付给用户&#xff0c;并且禁止哪些未经过授权的访问&#xff1f;九河云将基于AWS平台提供边缘媒体安全交付解决方案 解决方案详情 在通过 Amazon CloudFront 交付时&#xff0c;免受未经授权的访问。基于添加到交…

单页面vite打包学习

前端工程化本人真的很发怵&#xff0c;一直也没有专心去突破一下&#xff0c;都是能用就用&#xff0c;所以今天小小学习一下打包&#xff0c;先从单页面应用的vite打包开始。本文主要是一些我的大白话和有限的经验&#xff0c;如有问题望指正。 一、问题 网页要从服务器请求…

读书笔记——《未来简史》

前言 《未来简史》是以色列历史学家尤瓦尔赫拉利的人类简史三部曲之一。三部分别为《人类简史》《未来简史》《今日简史》。其中最为著名的当然是《人类简史》&#xff0c;非常宏大的一本关于人类文明历史的书籍&#xff0c;绝对可以刷新历史观&#xff0c;《人类简史》这本书…

磁盘raid1降级后,mdxxx rota发生变化

背景 虚拟机系统盘vda后端使用宿主机ssd盘lvm组raid1,虚拟机内部查看vda磁盘类型(rota=1):机械硬盘,vda后端raid1降级导致磁盘类型降级:rota 0---->1,vda磁盘类型显示不正确,应该是ssd类型(rota=0); 分析 1.基础 1.1 linux磁盘类型 Rota表示磁盘类型:(1)0,表…

css3过渡与动画

css3过渡与动画 前言过渡过渡的基本使用 transition兼容性transition属性基本使用哪些属性可以参与过渡all过渡的四个小属性 过渡的缓动效果常用缓动参数贝塞尔曲线 过渡效果实战 动画动画的定义和调用动画的执行次数 动画效果实战 案例&#xff1a;发光的灯泡案例&#xff1a;…

前端框架前置学习Node.js(2)npm使用,Node.js总结

npm - 软件包管理器 定义 npm是Node.js标准的软件包管理器 npm仓库中包含大量软件包,使其成为世界上最大的单一语言代码仓,并且可以确定几乎可用于一切的软件包 最初是为了下载和管理Node.js包依赖的方式,但其现在已成为前端JavaScript中使用的工具 使用: 1.初始化清单文…

编译 FastDFS 时报错 fatal error: sf/sf_global.h: No such file or directory 解决办法

编译 FastDFS 时&#xff0c;报错如下 gcc -Wall -D_FILE_OFFSET_BITS64 -D_GNU_SOURCE -g -O1 -DDEBUG_FLAG -c -o ../common/fdfs_global.o ../common/fdfs_global.c -I../common -I/usr/local/include In file included from ../common/fdfs_global.c:21:0: ../common/fdf…

力扣每日一题--2088. 统计农场中肥沃金字塔的数目

看到这道题有些人很容易放弃&#xff0c;其实这道题不是很难&#xff0c;主要是题目长&#xff0c;读的容易让人放弃&#xff0c;但是 只要抓住一些性质就可以解决该问题。 本题中的定义放到图像里其实就是个金字塔&#xff0c;下层的那部分比上一层的那部分&#xff0c;长度加…

【PID精讲 14 】积分分离PID和抗积分饱和PID

文章目录 一、积分分离PID1.1 积分分离PID算法基本思想1.2 积分分离PID算法实现步骤1.3 积分分离PID算法1.4 积分分离PID算法实现1.5 积分分离PID算法仿真实例1.6 积分分离PID算法的优缺点 二、抗积分饱和PID2.1 积分饱和现象2.2 抗积分饱和算法2.3 抗积分饱和算法实现2.4 抗积…

排序算法8----归并排序(非递归)(C)

1、介绍 归并排序既可以是内排序&#xff08;在内存上的数据排序&#xff09;&#xff0c;也可以是外排序&#xff08;磁盘上&#xff09;&#xff08;硬盘&#xff09;&#xff08;在文件中的数据排序&#xff09;。 其他排序一般都是内排序。 区别于快速排序的非递归&#xf…

【React源码 - Diff算法】

介绍 在React学习中&#xff0c;Diff算法(协调算法)&#xff0c;想必我们并不陌生&#xff0c;简单来说就是一个对比新老节点寻找差异&#xff0c;然后找出最小的一个变化集&#xff0c;最后对这个最小变化集进行最小的DOM操作&#xff0c;本文将从源码来分析在React(17.0.2)中…

Python入门-字面量,函数,类

Python 中常用的有6种值&#xff08;数据&#xff09;的类型 (1)字符串需要用英文的双引号包围起来&#xff0c;比如打印"helloworld" &#xff08;2&#xff09;浮点数&#xff0c;整数&#xff0c;字符串等字面量的写法 &#xff08;3&#xff09;字符串定义及打印…

【极光系列】springboot集成redis

【极光系列】springboot集成redis tips&#xff1a;主要用于快速搭建环境以及部署项目入门 gitee地址 直接下载源码可用 https://gitee.com/shawsongyue/aurora.git模块&#xff1a;aurora_rediswindow安装redis安装步骤 1.下载资源包 直接下载解压&#xff1a;https://pa…

汇编和c++初学,c++字符串加整型,导致的字符串偏移

从汇编角度分析"helloworld"1 “helloworld”1对应 mov dword ptr [a],1 mov eax,dword ptr [a] add eax,offset string "helloworld" (03CCCBCh)eax地址偏移加了1&#xff0c; lea ecx,[test]最终取的内存偏移地址&#xf…

【遥感专题系列】影像信息提取之——面向对象的影像分类技术

“同物异谱&#xff0c;同谱异物”会对影像分类产生的影响&#xff0c;加上高分辨率影像的光谱信息不是很丰富&#xff0c;还有经常伴有光谱相互影响的现象&#xff0c;这对基于像素的分类方法提出了一种挑战&#xff0c;面向对象的影像分类技术可以一定程度减少上述影响。 本…

Go-gin-example 第二部分 jwt验证

文章目录 使用 JWT 进行身份校验jwt知识点补充认识JWTTOKEN是什么jwt的使用场景jwt的组成headerpayloadsignature 下载依赖包编写 jwt 工具包jwt中间件编写如何获取token 编写获取token的Apimodels逻辑编写路由逻辑编写修改路由逻辑 验证token将中间件接入Gin功能验证模块 续接…

交友脱单盲盒源码,纸条广场,支持单独抽取/连抽/同城

源码介绍 交友脱单盲盒源码&#xff0c;纸条广场&#xff0c;单独抽取/连抽/同城。 盲 盒交友脱单系统源码包含了学校、爱好、城市、地区、星座等 等信息&#xff0c;具有首页轮转广告和页面美化功能。 首页提供了两款 连抽和高质量底部连抽的选项&#xff0c;并且可以在后台…

如何通过ISPC使用Xe(核显)进行计算

我一直以为 ISPC 的 Xe 是只包含独立显卡的&#xff0c;比如 A770 这些&#xff0c;没想到看了眼文档是可以使用核显的&#xff0c;但只能在 Linux 和 Windows 上&#xff0c;macOS 不行&#xff0c;就想试试看。 写本文是因为 ISPC 已经出现了三四个版本的大改&#xff0c;但…

基于SSM的网上挂号系统的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

每日一练:LeeCode-102、二又树的层序遍历【二叉树】

本文是力扣LeeCode-102、二又树的层序遍历 学习与理解过程&#xff0c;本文仅做学习之用&#xff0c;对本题感兴趣的小伙伴可以出门左拐LeeCode。 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&…