运筹说 第67期 | 动态规划模型的建立与求解

通过前一期的学习,我们已经学会了动态规划的基本概念和基本原理。本期小编带大家学习动态规划模型的建立与求解。

动态规划模型的建立

 概述

建立动态规划的模型,就是分析问题并建立问题的动态规划基本方程。

成功地应用动态规划方法的关键,在于识别问题的多阶段特征,将问题分解成为可用递推关系式联系起来的若干子问题,而正确建立基本递推关系方程的关键又在于正确选择状态变量,保证各阶段的状态变量具有递推的状态转移关系s_{k+1}=T_{k}(s_{k},u_{k})

 例题展示

接下来小编将以资源分配问题为例介绍动态规划的建模条件及解法,详见例1。资源分配问题是动态规划的典型应用之一,资源可以是资金、原材料、设备、劳力等,资源分配就是将一定数量的一种或几种资源恰当地分配给若干使用者,以获取最大效益。

例1:某公司有资金10万元,若投资于项目i(i=1,2,3)的投资额为x_{i}时,其收益分别为g_{1}(x_{1})=4x_{1},g_{2}(x_{2})=9x_{2},g_{3}(x_{3})=2x_{3}^{2},问应如何分配投资数额才能使总收益最大?

首先这是一个与时间无明显关系的静态最优化问题,可列出其静态模型:

x_{1},x_{2},x_{3},使maxz=4x_{1}+9x_{2}+2x_{3}^{2},且满足约束

为了应用动态规划方法求解,可以人为地赋予它“时段”的概念。将投资项目排序,依次对项目1、2、3投资,即把问题划分为3个阶段,每个阶段只决定对一个项目应投资的金额,从而转化为一个3段决策过程。通常可以把决策变量u_{k}定为原静态问题中的变量 x_{k} ,即设u_{k}=x_{k}(k=1,2,3)

状态变量和决策变量有密切关系,状态变量一般为累计量或随递推过程变化的量。针对本例,可以把每阶段可供使用的资金定为状态变量s_{k},初始状态s_{1}=10u_{1}为可分配用于第一种项目的最大资金,则当第一阶段(k=1)时,有

第二阶段(k=2)时,状态变量为余下可投资于其余两个项目的资金,即

一般地,当第k段时

于是有

阶段k:本例中取1,2,3。

状态变量s_{k}:第k段可以投资于第k项到第3个项目的资金。

决策变量x_{k} :决定给第k个项目投资的资金。

状态转移方程:s_{k+1}=s_{k}-x_{k}

指标函数:v_{k,3}=\sum_{i=k}^{3}{g_{i}(x_{i}})

最优指标函数f_{k}(s_{k}) :当可投资金为s_{k}时,投资第k-3项所得的最大收益。

基本方程为

用动态规划方法逐段求解,便可得到各项目最佳投资金额, f_{1}(10)就是所求的最大收益。

三 模型建立要点

1.分析题意,识别问题的多阶段特性,按时间或空间的先后顺序适当地划分为满足递推关系的若干阶段,对非时序的静态问题要人为地赋予“时段”概念。

2.正确地选择状态变量,使其具备两个必要特征:

(1)可知性;即过程演变的各阶段状态变量的取值,能直接或间接地确定。

(2)能够确切地描述过程的演变且满足无后效性。即由第阶段的状态出发的后部子过程,可以看作是一个以为初始状态的独立过程。

3.根据状态变量与决策变量的含义,正确写出状态转移方程或转移规则。

4.根据题意明确指标函数 v_{k,n},最优指标函数f_{k}(s_{k}) 以及阶段指标v_{k}(s_{k},u_{k}) 的含义,并正确列出最优指标函数的递推关系及边界条件(即基本方程)。

逆序解法与顺序解法

动态规划的求解有两种基本方法:逆序解法(后向动态规划方法)、顺序解法(前向动态规划方法)。

上一期的例题求解实际使用的就是逆序解法,即寻优的方向与多阶段决策过程的实际行进方向相反,从最后一段开始计算逐段前推,求得全过程的最优策略。与之相反,顺序解法的寻优方向与过程的行进方向相同,计算时从第一段开始逐段向后递推,计算后一阶段要用到前一阶段的求优结果,最后一段计算的结果就是全过程的最优结果。

一 例题展示

小编接下来将用例2来说明顺序解法。

例2:给定一个线路网格图(图1),要从A地向F地铺设一条输油管道,各点间连线上的数字表示距离,问应该选择什么路线,可使总距离最短?

图1

由于此问题的始点A与终点F都是固定的,计算由A点到F点的最短路线与由F点到A点的最短路线没有什么不同。若设f_{k}(s_{k+1})表示从起点A到第k阶段状态的最短距离,我们就可以由前向后逐步求出起点A到各阶段起点的最短距离,最后求出A点到F点的最短距离及路径。计算步骤如下:

k=0时,f_{0}(s_{1})=f_{0}(A)=0,这是边界条件。

k=1时,按f_{1}(s_{2})的定义有

k=2时,

 

类似地,可算得

按定义知 f_{5}(F)=17 为所求最短路长,而路径则为A\rightarrow B_{1}\rightarrow C_{2}\rightarrow D_{2}\rightarrow E_{3}\rightarrow F ,全部计算情况如图2所示。图中每节点上方括号内的数表示该点到A点的最短距离,粗黑线表示该点到A点的路径。

图2

上述解法可以写成如下的递推方程:

状态转移方程为: s_{k}=T_{k}(s_{k+1},u_{k})

顺序解法与逆序解法本质上并无区别,一般来说,当初始状态给定时可用逆序解法,当终止状态给定时可用顺序解法。若问题给定了一个初始状态与一个终止状态,则两种方法均可使用,如例2。但若初始状态虽已给定,终点状态有多个,需比较到达不同终点状态的各个路径及最优指标函数值,以选取总效益最佳的终点状态时,使用顺序解法比较简便。

总之,针对问题的不同特点,灵活地选用这两种方法之一,可以使求解过程简化。

二 建模注意事项

  1. 状态转移方式不同

如图3所示,逆序解法中第k段的输入状态为 s_{k} ,决策为 u_{k} ,由此确定输出为s_{k+1},即第k+1段的状态,所以状态转移方程为 s_{k+1}=T_{k}(s_{k+1},u_{k}) ,该式称为状态s_{k}s_{k+1}的顺序转移方程。

图3

顺序解法中第k段的输入状态为s_{k+1},决策为u_{k} ,输出为 s_{k},如图4所示,此时的状态转移方程为 s_{k}=T_{k}(s_{k+1},u_{k}),该式称为由状态 s_{k+1}s_{k} 的逆序状态转移方程。

图4

同样的道理,逆序解法中的阶段指标v_{k}(s_{k},u_{k})在顺序解法中应为v_{k}(s_{k+1},u_{k})

2.指标函数的定义不同

逆序解法中,我们定义最优指标函数f_{k}(s_{k})表示第k段从状态s_{k}出发,到终点后部分子过程最优效益值, f_{1}(s_{1}) 是整体最优函数值。

顺序解法中,应定义最优指标函数f_{k}(s_{k+1})表示第k段从起点到状态s_{k+1} 的前部子过程最优效益值,f_{n}(s_{n+1})是整体最优函数值。

3.基本方程形式不同

(1)当指标函数为阶段指标和形式,在逆序解法中

则基本方程为

顺序解法中

基本方程为

(2)当指标函数为阶段指标积形式,在逆序解法中

则基本方程为

在顺序解法中,

基本方程为

特别指出的是,这里有关顺序解法的表达式,是在原状态变量符号不变条件下得出的,若将状态变量记法改为 S_{0}S_{1},... S_{n} ,则最优指标函数也可表示为f_{k}(s_{k}),即符号等同于逆序解法,但含义不同。

基本方程分段求解时的几种常用算法

动态规划模型建立后,对基本方程分段求解,不像线性规划或非线性规划那样有固定的解法,必须根据具体问题的特点,结合数学技巧灵活求解,大体有以下几种方法。

一 离散变量的分段穷举算法

动态规划模型中的状态变量与决策变量若被限定只能取离散值,则可采用分段穷举法。如例2的求解方法就是分段穷举算法,由于每段的状态变量和决策变量离散取值个数较少,所以动态规划的穷举法要比一般的穷举法有效。用分段穷举法求最优指标函数值时,最重要的是正确确定每段状态变量取值范围和允许决策集合的范围。

二 连续变量的解法

当动态规划模型中状态变量与决策变量为连续变量,就要根据方程的具体情况灵活选取求解方法,如经典解析方法、线性规划方法、非线性规划法或其他数值计算方法等。如在例1中,状态变量与决策变量均可取连续值而不是离散值,所以每阶段求优时不能用穷举方法处理。下面分别用逆序解法和顺序解法来求解例1。

(1)用逆序解法

由前面分析可知,例1为三段决策问题,状态变量s_{k} 为第k段初拥有的可以分配给第k到第3个项目的资金;决策变量 x_{k} 为决定投给第k个项目的资金;状态转移方程为 s_{k+1}=s_{k}-x_{k} ;最优指标函数f_{k}(s_{k}) 表示第k阶段,初始状态为 s_{k} 时,从第k到第3个项目所获最大收益,f_{1}(s_{1})) 即为所求的总收益。递推方程为

这是一个简单的函数求极值问题,易知当 x_{3}^{*}=s_{3} 时,取得极大值,即

所以x_{2}=s_{2}-9/4是极小点。

极大值只可能在 [0,s_{2}] 端点取得,

f_{2}(0)=f_{2}(s_{2})时,解得s_{2}=9/2

s_{2}>9/2 时, f_{2}(0)>f_{2}(s_{2}) ,此时x_{2}^{*}=0

s_{2}<9/2 时,f_{2}(0)<f_{2}(s_{2}),此时x_{2}^{*}=s_{2}

但此时 s_{2}=s_{1}-x_{1}=10-0=10>9/2

s_{2}<9/2 矛盾,所以舍去。

所以 x_{1}=s_{1}-1是极小点。

比较[0,10]两个端点, x_{1}=0时,f_{1}(10)=200

x_{1}=10时,f_{1}(10)=40

所以 x_{1}^{*}=0

再由状态转移方程顺推 s_{2}=s_{1}-x_{1}^{*}=10

因为 s_{2}>9/2

所以s_{3}=s_{2}-x_{2}^{*}=10

由此 x_{3}^{*}=s_{3}=0

最优投资方案为全部投资于第3个项目,可得最大收益200万元。

(2)用顺序解法

阶段划分和决策变量的设置同逆序解法,令状态变量s_{k+1}表示可用于第1到第k个项目投资的金额,则有状态转移方程为s_{k}=s_{k+1}-x_{k}

令最优指标函数 f_{k}(s_{k+1}) 表示第k段投资额为s_{k+1}时第1到第k项目所获的最大收益,此时顺序解法的基本方程为

当k=1时,有

当k=2时,有

当k=3时,有

所以,此点为极小点。

极大值应在端点 [0,s_{4}]=[0,10] 取得

x_{3}=0时,f_{3}(10)=90

x_{3}=10时,f_{3}(10)=200

所以 x_{3}^{*}=10

再由状态转移方程逆推: s_{3}=10-x_{3}^{*}=0 ,x_{2}^{*}=0,s_{2}=10-x_{2}^{*}=0,x_{1}^{*}=0

所以最优投资方案与逆序解法结果相同,只投资于项目3,最大收益为200万元。比较两种解法的过程,可以发现,对本题而言,顺序解法比逆序解法简单。

三 连续变量的离散化解法

接下来,小编还是利用投资分配问题先介绍连续变量离散化的概念,如投资分配问题的一般静态模型为:

建立它的动态规划模型,其基本方程为

其状态转移方程为s_{k+1}=s_{k}-x_{k}

由于 s_{k}x_{k} 都是连续变量,当各阶段指标 g_{k}(x_{k})没有特殊性质而较为复杂时,要求出 f_{k}(s_{k})会比较困难,因而求全过程的最优策略也就相当不容易,这时常常采用把连续变量离散化的办法求解其数值解,具体做法如下:

(1)令s_{k}=0,\Delta ,2,\Delta ,...,m\Delta, \Delta =a ,把区间 [0,a] 进行分割, Δ 的大小可依据问题所要求的精度以及计算机的容量来定。

(2)规定状态变量s_{k}以及决策变量 x_{k} 只在离散点0,\Delta ,2,\Delta ,...,m\Delta上取值,相应的指标函数 f_{k}(s_{k}) 就被定义在这些离散值上,于是递推方程就变为

(3)按逆序方法,逐步递推求出 f_{n}(s_{n}),…,f_{1}(s_{1}),最后求出最优资金分配方案。

小编仍使用例1作为离散化例子

解:规定状态变量和决策变量只在给出的离散点上取值,令 Δ=2 ,将区间[0,10]分割0,2,4,6,8,10成六个点,即状态变量s_{k}集合为{0,2,4,6,8,10}。

允许决策集合为0\leq x_{k}\leq s_{k}x_{k}s_{k} 均在分割点上取值。

动态规划基本方程为

当k=3时,

式中 s_{3}x_{3}的集合均为{0,2,4,6,8,10}。计算结果见表1。

表1

当k=2时,

计算结果见表2

表2

当k=1时,

计算结果见表3

表3

​​​​​​​

计算结果表明,最优决策为:x_{1}^{*}=0,x_{2}^{*}=0,x_{3}^{*}=0 ,最大收益为f_{1}(10)=200 ,与上述用逆序和顺序算法得到的结论完全相同。

应指出的是,这种方法有可能丢失最优解,一般得到原问题的近似解。

作者 | 张宇 刘智厅

责编 | 刘文志

审核 | 徐小峰

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/625437.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Laravel 框架中队列的使用

概述 Laravel 框架内置了强大的队列系统&#xff0c;用于处理异步任务、提高系统性能等。队列可以让任务异步执行&#xff0c;而不会阻塞当前进程&#xff0c;可以提高系统的处理能力。 Laravel 的队列系统支持多种驱动&#xff0c;如 Redis、Beanstalkd、SQS 等&#xff0c;…

(Java企业 / 公司项目)JMeter接口压测使用(保姆式手把手教会)

一. JMeter简介认识&#xff08;重点是下面的使用方法&#xff09; JMeter是一个开源的Java应用程序&#xff0c;由Apache软件基金会开发和维护&#xff0c;可用于性能测试、压力测试、接口测试等。 1. 原理 JMeter的基本原理是模拟多用户并发访问应用程序&#xff0c;通过发…

多目标优化(Python):多目标粒子群优化算法(MOPSO)求解ZDT1、ZDT2、ZDT3、ZDT4、ZDT6(提供Python代码)

一、多目标粒子群优化算法 多目标粒子群优化算法&#xff08;MOPSO&#xff09;是一种用于解决多目标优化问题的进化算法。它基于粒子群优化算法&#xff08;PSO&#xff09;&#xff0c;通过引入多个目标函数和非支配排序来处理多目标问题。 MOPSO的基本思想是将问题转化为在…

C#,字符串匹配(模式搜索)AC(Aho Corasick)算法的源代码

Aho-Corasick算法简称AC算法&#xff0c;也称为AC自动机(Aho-Corasick)算法&#xff0c;1975年产生于贝尔实验室&#xff08;The Bell Labs&#xff09;&#xff0c;是一种用于解决多模式字符串匹配的经典算法之一。 the Bell Lab 本文的运行效果&#xff1a; AC算法以模式树…

深度学习记录--Train/dev/test sets

为什么需要训练集、验证集(简单交叉验证集)和测试集&#xff1f; 为了创建高效的神经网络&#xff0c;需要不断进行训练(迭代) 一个神经网络的产生 从最开始的想法idea开始&#xff0c;然后付诸于代码code&#xff0c;根据结果验证反过来对一开始的想法idea进行修正&#xf…

腾讯云服务器怎么买?两种购买方式更省钱

腾讯云服务器购买流程很简单&#xff0c;有两种购买方式&#xff0c;直接在官方活动上购买比较划算&#xff0c;在云服务器CVM或轻量应用服务器页面自定义购买价格比较贵&#xff0c;但是自定义购买云服务器CPU内存带宽配置选择范围广&#xff0c;活动上购买只能选择固定的活动…

深度系统QT 环境搭建

1.QT安装 不折腾最新版直接去商店搜索QT安装。 2.修改su密码&#xff0c;安装需要权限 打开一个终端&#xff0c;然后输入下面的命令&#xff1a;按照提示输入密码按回车就行。 sudo passwd 回车后会出现让你输入现在这个账户的密码&#xff1a; 3.编译环境安装。 安…

CSS实现超出部分的省略

1、为什么要省略 在日常开发过程中我们难免会遇到后端返回给我们的的数据太长的情况&#xff0c;此时我们通常采取的是...的省略方式&#xff0c;其中的CSS大致如下&#xff0c;既可以实现对应的省略显示&#xff0c;但有些时候我们有需要用户可以查看具体的完整信息&#xff0…

利用Python的csv(CSV)库读取csv文件并取出某个单元格的内容的学习过程

csv库在python3中是自带的。 利用它可以方便的进行csv文件内容的读取。 注意&#xff1a;要以gbk的编码形式打开&#xff0c;因为WPS的csv文件默认是gbk编码&#xff0c;而不是utf-8。 01-读取表头并在打印每一行内容时一并输出表头 表头为第1行&#xff0c;现在要读取并打…

基础面试题整理4

1.mybatis的#{}和${}区别 #{}是预编译处理&#xff0c;${}是字符串替换#{}可以防止SQL注入&#xff0c;提高安全性 2.mybatis隔离级别 读未提交 READ UNCOMMITED&#xff1a;读到了其他事务中未提交的数据&#xff0c;造成"脏读","不可重复读","幻读&…

1月12日1月15日代码随想录路经总和从中序和后序遍历构造二叉树

112.路经总和 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径&#xff0c;这条路径上所有节点值相加等于目标和 targetSum 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 叶子节点 …

matlab|基于VMD-SSA-LSTM的多维时序光伏功率预测

目录 1 主要内容 变分模态分解(VMD) 麻雀搜索算法SSA 长短期记忆网络LSTM 2 部分代码 3 程序结果 4 下载链接 1 主要内容 之前分享了预测的程序基于LSTM的负荷和可再生能源出力预测【核心部分复现】&#xff0c;该程序预测效果比较好&#xff0c;并且结构比较清晰&#…

buuctf-Misc 题目解答分解118-120

118.[INSHack2017]sanity 打开压缩包就是一个md 文件 typora 打开 发现flag INSA{Youre_sane_Good_for_you} 119.粽子的来历 解压压缩包 &#xff0c;得到文件夹如下 用010 editor 打开 我是A.doc 这个有些可以 都改成FF 保存 然后再次打开 docx 文件就发现了屈原的诗 其他b…

uniapp + node.js 开发问卷调查小程序

前后端效果图 后端&#xff1a;nodejs 12.8 ; mongoDB 4.0 前端&#xff1a;uniapp 开发工具&#xff1a;HBuilderX 3.99 前端首页代码 index.vue <!-- 源码下载地址 https://pan.baidu.com/s/1AVB71AjEX06wpc4wbcV_tQ?pwdl9zp --><template><view class&q…

新年送长辈礼物怎么选?华为畅享70 Pro 给长辈的新年贴心机

随着春节的脚步越来越近&#xff0c;我们也在为如何表达对长辈的关爱而烦恼。新年送礼&#xff0c;不仅要表达心意&#xff0c;更要考虑到长辈的需求和习惯。今天&#xff0c;我为大家带来一款特别适合长辈的礼物——华为畅享70 Pro。 首先&#xff0c;最直观的感受就是“大”。…

Docker部署Traefik结合内网穿透远程访问Dashboard界面

文章目录 前言1. Docker 部署 Trfɪk2. 本地访问traefik测试3. Linux 安装cpolar4. 配置Traefik公网访问地址5. 公网远程访问Traefik6. 固定Traefik公网地址 前言 Trfɪk 是一个云原生的新型的 HTTP 反向代理、负载均衡软件&#xff0c;能轻易的部署微服务。它支持多种后端 (D…

手机视频转换gif怎么操作?一个小妙招教你手机在线制gif

在现代社会gif动图已经是一种非常流行的图片格式了。可以通过视频转换gif的方式将自己的想法和创意制作成gif动图与好友进行分享斗图。那么&#xff0c;当我们想要在手机上完成视频转换成gif动图是应该怎么办呢&#xff1f;通过使用手机端的gif动图制作&#xff08;https://www…

uniapp 权限申请插件(权限使用说明) Ba-Permissions

简介&#xff08;下载地址&#xff09; Ba-Permissions 是一款权限申请插件&#xff0c;支持权限使用说明弹窗&#xff0c;满足市场审核需求。支持自定义权限申请&#xff0c;也支持快速申请定位、相机、媒体、文件、悬浮窗等常见权限。 支持权限使用说明弹窗&#xff0c;满足…

16 命令行模式

命令行模式 将行为的执行与与行为的调用通过命令分离&#xff0c;行为的的调用者不需要知道具体是哪个类执行的&#xff0c;他们之间通过命令连接。 demo的目录结构 命令的执行者&#xff08;接口&#xff09; package behavioralpattern.commandpattern.actuator;import ja…

el-tabs那些事

去除el-tab-pane的内边距 :deep(.el-tabs--border-card > .el-tabs__content) {padding: 0; }