MetaGPT是一个基于大型语言模型(LLMs)的多智能体协作框架。它利用SOP(Standard Operating Procedures,标准作业程序)来协调基于大语言模型的多智能体系统,从而实现元编程技术。该框架使用智能体模拟了一个虚拟软件团队,包含产品经理、架构师、项目经理、工程师、质量工程师等角色,并引入SOP成为框架的虚拟软件团队的开发流程。
安装部署
MetaGPT提供了两种部署方式:pip本地部署和docker部署。
这里使用pip进行了安装:
# 创建虚拟环境
conda create -n py39 python=3.9
conda activate py39
# clone项目到本地
git clone https://github.com/geekan/MetaGPT.git
cd /your/path/to/MetaGPT
pip install -e .
项目提供了一些例子,比如贪吃蛇展示MetaGPT的设计理念,即每个项目都可以抽象为一个标准流程(SOP),不同的角色负责项目的不同方面,组成一个项目组共同完成任务。
尝试
除了OpenAI外,MetaGPT还支持国内的智谱、讯飞星火等。这里使用智谱的开放平台,目前平台会提供大概200万的测试用的额度。基本可以满足学习需求。
【默认安装后的版本是0.6.0,直接使用的话,发现会失败,后来看到文档上说,目前需要使用0.5.2的版本,将版本回退后,便可以执行成功】
适配其他国产模型 - 飞书云文档 (feishu.cn)
# 可导入任何角色,初始化它,用一个开始的消息运行它,完成!
import osos.environ["ZHIPUAI_API_KEY"] = "申请的KEY"import asyncio
import re
import subprocessimport firefrom metagpt.actions import Action
from metagpt.logs import logger
from metagpt.roles.role import Role, RoleReactMode
from metagpt.schema import Messageclass SimpleWriteCode(Action):PROMPT_TEMPLATE: str = """Write a python function that can {instruction} and provide two runnnable test cases.Return ```python your_code_here ``` with NO other texts,your code:"""name: str = "SimpleWriteCode"async def run(self, instruction: str):prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)rsp = await self._aask(prompt)code_text = SimpleWriteCode.parse_code(rsp)return code_text@staticmethoddef parse_code(rsp):pattern = r"```python(.*)```"match = re.search(pattern, rsp, re.DOTALL)code_text = match.group(1) if match else rspreturn code_textclass SimpleRunCode(Action):name: str = "SimpleRunCode"async def run(self, code_text: str):result = subprocess.run(["python3", "-c", code_text], capture_output=True, text=True)code_result = result.stdoutlogger.info(f"{code_result=}")return code_resultclass SimpleCoder(Role):name: str = "Alice"profile: str = "SimpleCoder"def __init__(self, **kwargs):super().__init__(**kwargs)self._init_actions([SimpleWriteCode])async def _act(self) -> Message:logger.info(f"{self._setting}: to do {self._rc.todo}({self._rc.todo.name})")todo = self._rc.todo # todo will be SimpleWriteCode()msg = self.get_memories(k=1)[0] # find the most recent messagescode_text = await todo.run(msg.content)msg = Message(content=code_text, role=self.profile, cause_by=type(todo))return msgclass RunnableCoder(Role):name: str = "Alice"profile: str = "RunnableCoder"def __init__(self, **kwargs):super().__init__(**kwargs)self._init_actions([SimpleWriteCode, SimpleRunCode])self._set_react_mode(react_mode=RoleReactMode.BY_ORDER.value)async def _act(self) -> Message:logger.info(f"{self._setting}: to do {self._rc.todo}({self._rc.todo.name})")# By choosing the Action by order under the hood# todo will be first SimpleWriteCode() then SimpleRunCode()todo = self._rc.todomsg = self.get_memories(k=1)[0] # find the most k recent messagesresult = await todo.run(msg.content)msg = Message(content=result, role=self.profile, cause_by=type(todo))self._rc.memory.add(msg)return msgdef main(msg="创建一个定时将目录下文件推送到某FTP的程序,每次推送完成后,将已经推送的文件迁移到其他目录进行备份,备份的文件保留2天"):# role = SimpleCoder()role = RunnableCoder()logger.info(msg)result = asyncio.run(role.run(msg))logger.info(result)if __name__ == "__main__":fire.Fire(main)
关于智能体
智能体 = LLM+观察+思考+行动+记忆
可能对于程序员来说,我觉得可以用更加简单的方式去理解这个概念。所谓的智能体,有些像我们借助大模型的能力,模拟出多个角色,当我们提出一个问题后,可以通过这些角色分工合作来解决。然后,metagpt的功能,更像是让我们简化定义操作角色的方式。这样可以让我们可以通过相对简单的方式,模拟出N个角色,让智能体来解决问题。
通过Demo的体验,总的感觉来说是很不错的~
让我们快乐的折腾吧~
过程中的一些困惑
其实周围的人,对于大模型的态度差异很大,有的人觉得大模型不太靠谱,还需要继续发展;有的人觉得,大模型是未来的一个热点~~
嗯,对于我来说,整体来说是比较看好大模型的,但是使用过程中,也遇到了一些困惑。
- 效率问题:目前测试的时候,也就执行了五六次代码,就消费了6~7w的token。消耗感觉还是挺大的,感觉如果是个人的话,有些消费不起。。在单位部署了ChatGLM3B,但是在家没法这么玩。
- 高度的依赖LLM: 大模型的好坏,其实直接影响了后面的一切。个人其实没法很好的去开发定义大模型底层的东西,而且要求的能力也很高。
- 有些任务很复杂,并不是很容易解决。对于需要多个步骤的任务,每一个决策,都会影响后面的决策,最终可能直接影响整个决策的质量,智能体在这方面,可能并不是很容易解决。而且,有的任务,并不是需要每个过程都完美,还是需要从全局去考虑的。
- ~~