今日任务
- 654.最大二叉树 - Medium
- 617.合并二叉树 - Easy
- 700.二叉搜索树中的搜索 - Easy
- 98.验证二叉搜索树 - Medium
654.最大二叉树 - Medium
题目链接:. - 力扣(LeetCode)
给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建:
创建一个根节点,其值为 nums 中的最大值。
递归地在最大值 左边 的 子数组前缀上 构建左子树。
递归地在最大值 右边 的 子数组后缀上 构建右子树。
返回 nums 构建的 最大二叉树 。
思路:递归法
class Solution {
private:// 在左闭右开区间[left, right),构造二叉树TreeNode* traversal(vector<int>& nums, int left, int right) {if (left >= right) return nullptr;// 分割点下标:maxValueIndexint maxValueIndex = left;for (int i = left + 1; i < right; ++i) {if (nums[i] > nums[maxValueIndex]) maxValueIndex = i;}TreeNode* root = new TreeNode(nums[maxValueIndex]);// 左闭右开:[left, maxValueIndex)root->left = traversal(nums, left, maxValueIndex);// 左闭右开:[maxValueIndex + 1, right)root->right = traversal(nums, maxValueIndex + 1, right);return root;}
public:TreeNode* constructMaximumBinaryTree(vector<int>& nums) {return traversal(nums, 0, nums.size());}
};
617.合并二叉树 - Easy
题目链接:. - 力扣(LeetCode)
给你两棵二叉树: root1 和 root2 。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
注意: 合并过程必须从两个树的根节点开始。
思路:递归法,前序遍历,同时传入两棵树的节点,一起操作
class Solution {
public:TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1// 修改了t1的数值和结构t1->val += t2->val; // 中t1->left = mergeTrees(t1->left, t2->left); // 左t1->right = mergeTrees(t1->right, t2->right); // 右return t1;}
};
700.二叉搜索树中的搜索 - Easy
题目链接:. - 力扣(LeetCode)
给定二叉搜索树(BST)的根节点 root 和一个整数值 val。
你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。
思路:二叉搜索树是一个有序树,若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树
递归法
class Solution {
public:TreeNode* searchBST(TreeNode* root, int val) {if (root == NULL || root->val == val) return root;TreeNode* result = NULL;if (root->val > val) result = searchBST(root->left, val);if (root->val < val) result = searchBST(root->right, val);return result;}
};
迭代法
class Solution {
public:TreeNode* searchBST(TreeNode* root, int val) {while (root != NULL) {if (root->val > val) root = root->left;else if (root->val < val) root = root->right;else return root;}return NULL;}
};
98.验证二叉搜索树 - Medium
题目链接:. - 力扣(LeetCode)
给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
节点的左子树只包含 小于 当前节点的数。
节点的右子树只包含 大于 当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
提示: 中序遍历,二叉搜索树中没有重复元素;要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了
递归法
class Solution {
private:vector<int> vec;void traversal(TreeNode* root) {if (root == NULL) return;traversal(root->left);vec.push_back(root->val); // 将二叉搜索树转换为有序数组traversal(root->right);}
public:bool isValidBST(TreeNode* root) {vec.clear(); // 不加这句在leetcode上也可以过,但最好加上traversal(root);for (int i = 1; i < vec.size(); i++) {// 注意要小于等于,搜索树里不能有相同元素if (vec[i] <= vec[i - 1]) return false;}return true;}
};
迭代法
class Solution {
public:bool isValidBST(TreeNode* root) {stack<TreeNode*> st;TreeNode* cur = root;TreeNode* pre = NULL; // 记录前一个节点while (cur != NULL || !st.empty()) {if (cur != NULL) {st.push(cur);cur = cur->left; // 左} else {cur = st.top(); // 中st.pop();if (pre != NULL && cur->val <= pre->val)return false;pre = cur; //保存前一个访问的结点cur = cur->right; // 右}}return true;}
};
今日总结
三四题充分利用二叉搜索树的性质还是比较好解的