2020年认证杯SPSSPRO杯数学建模C题(第二阶段)抗击疫情,我们能做什么全过程文档及程序

2020年认证杯SPSSPRO杯数学建模

C题 抗击疫情,我们能做什么

原题再现:

  2020 年 3 月 12 日,世界卫生组织(WHO)宣布,席卷全球的冠状病毒引发的病毒性肺炎(COVID-19)是一种大流行病。世卫组织上一次宣布大流行是在 2009 年的 H1N1 流感爆发期间,该病感染了世界近四分之一的人口。但是,当时该决定因制造了不必要的恐慌而受到批评。SARS 尽管影响了 26 个国家,但仍未被认为是大流行病,MERS 也没有被认为是大流行病。世卫组织表示,大流行是“新疾病的全球传播”。对于达到大流行水平与否,当下没有定量的严格标准,也没有触发该定义的病例或死亡数量阈值。也就是说“大流行”特征所指的不是疾病的严重性,而是疾病传播的广泛程度。目前,在全球已有超过 200 个国家/地区报告了病毒感染病例。但由于各国的人口和经济情况差别较大,病毒检测能力和国家防疫政策都不尽相同,所以报告的病例是否就真实反映了病毒传播的情况? 如何能够对于疫情情况给出更加有效的量化指标,这是世卫组织非常关心的问题。
  “无症状感染者”全称是“新冠病毒无症状感染者”,指无临床症状、但呼吸道等标本新冠病毒病原学检测呈阳性者。无症状感染者可分为两种情形:一是感染者核酸检测呈阳性,经过 14 天潜伏期的观察,均无任何可自我感知或可临床识别的症状与体征,始终为无症状感染状态;二是感染者核酸检测呈阳性,采样时无任何可自我感知或可临床识别的症状与体征,但随后出现某种临床表现,即处于潜伏期的“无症状感染”状态。无症状感染者存在传染性。但传染期长短、强弱有待确定。很多人担心“无症状感染者”会成为新的传染源,那么,到底会不会呢? 部分专家认为鉴于无症状感染者的呼吸道标本能检出病原核酸,但由于无咳嗽、打喷嚏等临床症状,病原排出体外引起传播的机会较确诊病例相对少一些。另外,《英格兰医学杂志》上近日有报告说,一名感染者从未出现症状,但所释放的病毒量与出现症状的人相当。因此,也有一部分科学家猜测:一些感染者“在症状轻微或无症状时具有高度传染性”。但要强调的是,类似状况的患者规模仍不清楚。
  早在 2 月 17 日,中国疾控中心流行病学组在《中华流行病学杂志》上发表的大规模流调论文就提到,截至 2 月 11 日,中国疾控中心共收到国内报告病例 72314 例,含有 889 例无症状感染者,比例约占 1.2%。日本一个研究小组的报告称(研究论文 3 月 12 日刊登在 Eurosurveillance 杂志),对钻石公主号游轮上的 634 名新冠肺炎病例进行统计模型分析,估计无症状感染者所占比例为 17.9%。张文宏团队撰文指出,以目前部分研究为例,感染新冠病毒的人群中,无症状感染者的比例大约为 18%—31%。不过有些患者仅出现很轻微的症状,在隔离观察期间也不一定会被发现,也常常被认为是无症状。无症状感染者的识别具有一定的困难,如何快速地、准确地、最小成本地识别和判断也是世界各国非常关注的问题。
  第二阶段问题: 请你的团队结合第一阶段的问题,建立合理的数学模型来解决以下问题:
  1. 1918 年的西班牙流感是人类历史上第二致命的传染病,在 1918–1919年曾经造成全世界 10 亿人感染,2 千 5 百万到 4 千万人死亡(当时世界人口约为 17 亿人);其全球平均致死率约为 2.5%–5%,和一般流感的0.1% 比较起来较为致命,感染率也达到了 5%。然而大流行的第一波并不是最致命的,实际上,1918 年上半年流感大流行造成的最初死亡人数相对较低,基本上只是普通的流感。在那年 10 月至 12 月的第二波疫情中,死亡率最高。1919 年春天的第三次流感比第一次更致命,但比第二次要轻。随着全球新冠疫情拐点的到来,各国都在启动全面复工、复产的计划,但是必须承认这次疫情有出现第二次高峰的风险,第二次高峰一旦出现可能会更加可怕,对于经济的影响可能是致命的。请建立数学模型,选择三个国家进行研究,评估它们出现第二次高峰的风险大小,并给出复工复产的政策性建议,以避免第二次高峰的出现。
  2. 对一种刚刚出现的、传染迅速的流行病而言,有许多疾病的特征是不易准确测量的。例如潜伏期的长度分布,无症状感染者的比例,通常的测试方法对潜伏期和无症状感染者的假阴性率和假阳性率等等。当这些参数的取值不同时,防疫工作应以何种形式开展可能就会出现差异,疾病流行的最终趋势也会有所不同。请建立合理的数学模型,讨论哪些参数是最重要的,而这些参数如果不准确,会对防疫工作和疾病流行的过程带来怎样的影响。
  3. 我国的无症状感染者的数量持续降低,但是并未清零,也有一些无症状感染者未被发现,请结合第一阶段的模型,充分考虑我国的疫情现状,评估重启大型体育赛事(比如中超足球联赛或者 CBA 篮球联赛)的可能性,并给出分阶段(无观众赛事、部分观众赛事、全部观众但要求戴口罩赛事、全面放开赛事)重启的时间表。
  4. 为了能够顺利重启一些大型体育赛事,给有关部门写一份有关于疫情防控的备忘录。注:建模所需的部分数据可以从 https://github.com/datasets/covid-19下载。

整体求解过程概述(摘要)

  新冠肺炎爆发以来,对世界各国经济的发展造成了严重的影响。为了评估疫情出现第二次高峰风险的大小,确定影响疫情的重要参数,预测我国疫情持续时间,本文建立了 Fisher 多元判别模型、BP 神经网络模型、TOPSIS 算法、插值方法和 GM(1,1)模型,对疫情的影响进行了综合评价和预测。
  针对问题一,本文首先对所给附件进行数据预处理,通过上网收集数据,选取所需数据,对所得原始数据做标准化处理、归一化和可视化分析。以人口密度、人口流动、经济条件、医疗条件、防疫措施五项指标建立 Fisher 多元判别模型,对美国、德国、中国三个国家疫情出现二次高峰风险大小进行预测,求解出 Z1<Z2,Z12<Z22,Z13>Z23,即美国、德国疫情出现二次高峰风险大,中国疫情出现二次高峰风险小。建立 BP 神经网络模型,借助 MATLAB 工具并建立程序,得出了美国、德国、中国疫情出现二次高峰风险大小计算结果的准确率分别为 98%、96%、98%,验证了 Fisher 多元判别分析模型的准确性。
  针对问题二,为构建一个多指标综合考量的评价体系,挑选出主要影响防控工作及疾病流行的参数,首先,为了提高评价的准确性,此处选取了 7 个对疫情和防控有重要意义的参数。考虑到各参数需要充分结合疫情的发展定量态势去说明和评价,因此,我们选取全球疫情总人数进行动态跟踪,取 8 万、30 万、240 万、430 万共四个节点。对各参数不同节点数据进行了标准化和归一化处理,建立 TOPSIS 算法,进行了综合评价。选取了综合评分前 4 的四个参数,依次是潜伏期长度、无症状感染者的比例、医疗设施启用程度和假阴性/阳性率,分别对各参数的取值不准确时会对防控工作及疾病流行有哪些不同程度的影响进行了详细的分析和说明。
  针对问题三,首先对时间序列不连续的实测无症状感染者数据采用分段线性插值和三次样条插值方法进行还原。同时选取了 3 月 30 日左右疫情的爆发热点时期,全国累计确诊总人数 82545 人为依据,选取一阶段的 4.7%的无症状感染者比例对社会总群体无症状感染者数量进行了预测,为 3880 人。分别对现阶段实测的和社会群体预测的无症状感染者数量建立了 GM(1,1)模型,进行了时间轴预测。结果显示,在 7 月 16 日当天,能够检测得到的实测无症状感染者人数将会为 0;8 月 24 日对社会群体进行总体预测的无症状感染者人数将会为 0。以此作为依据,制定了一套完备的大型体育赛事重启和实施建议。
  针对问题四,本文依据问题一、问题二和问题三模型的建立,评估出三个国家疫情出现二次高峰风险大小,得出重要参数,预测出疫情持续时间。结合参考文献,简明扼要的撰写有关疫情的防控备忘录,对疫情的防控起到一定的指导作用。

问题分析:

  问题 1 的分析
  针对问题一本文首先对所给附件进行数据预处理,通过上网收集数据,选取所需数据,对所得原始数据做标准化处理、归一化和可视化分析。以人口密度、人口流动、经济条件、医疗条件、防疫措施五项指标建立 Fisher 多元判别模型,对美国、德国、中国三个国家疫情出现二次高峰风险大小进行预测。建立 BP 神经网络模型,借助 MATLAB工具并建立程序,求出美国、德国、中国疫情出现二次高峰风险大小计算结果的准确率,验证 Fisher 多元判别分析模型的准确性。
  问题 2 的分析
  针对问题二,为构建一个多指标综合考量的评价体系,挑选出主要影响防控工作及疾病流行的参数。首先,为了提高评价的准确性,此处选取了 7 个对疫情和防控有重要意义的参数。考虑到各参数需要充分结合疫情的发展定量态势去说明和评价,因此,我们选取全球疫情总人数进行动态跟踪,取 8 万、30 万、240 万、430 万四个节点。对各参数不同节点数据进行了标准化和归一化处理,建立 TOPSIS 算法,进行综合评价,选出最重要的参数,详细分析说明当各参数的取值不准确时会对防控工作及疾病流行有哪些不同程度的影响。
  问题 3 的分析
  针对问题三,首先对时间序列不连续的实测无症状感染者数据采用分段线性插值和三次样条差值方法进行还原。同时选取了 3 月 30 日左右疫情的爆发热点时期,全国累计确诊总人数 82545 人为依据,选取一阶段的 4.7%的无症状感染者比例对社会总群体无症状感染者数量进行了预测。分别对现阶段实测的和社会群体预测的无症状感染者数量建立了 GM(1,1)模型,进行了时间轴预测。预测我国疫情持续时间,制定一套大型体育赛事重启和实施建议。
  问题 4 的分析
  针对问题四本文依据问题一、问题二和问题三模型的建立,评估出三个国家疫情出现二次高峰风险大小,得出重要参数,预测出疫情持续时间。结合参考文献,简明扼要的撰写有关疫情的防控备忘录。

模型假设:

  假设多元判别可忽略各因素间的影响
  假设问题二中的多指标均可看为纵向指标,对疫情起到纵向影响
  假设数据插值时,两种插值方法间均可忽略较大区间对整体的影响
  假设问题三中用现阶段无症状感染者去推断社会总群体中的无症状感染者数量是可行的

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

p=[А];P=P'; 
T=[10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;1
0;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;10;01;01;01;01;01;01;0l;01;
01;01;0l;01;01;01;01;0l;01;01;01;01;0l;01;01;01;01;0l;01;01;01;01;0l;01;01;01;01;0l;01;01;0
1;01;0l;01;01;01;01;0l;01;01;01;01];
T=T’;
net=newff(minmax(р), [21, 8, 2], {'tansig','tansig','logsig'} ,’traingdm')net.trainParam.epochs=40000;
net.trainParam.goal=0.01;
net.trainParam.lr=0.01;
net=train(net,p,T);
p1= [B];
p1=p1;
Y=sim (net,p1);
x=[0.4 0.6 0.78 0.7
0.43 0.62 0.75 0.8
0.75 0.70 0.64 0.50
0.80 0.65 0.43 0.50
0.60 0.67 0.73 0.78
0.40 0.52 0.67 0.75
0.45 0.68 0.79 0.75
];
y=zscore(x)
clc, clear
a=[0.4 0.6 0.78 0.7
0.43 0.62 0.75 0.8
0.75 0.70 0.64 0.50
0.80 0.65 0.43 0.50
0.60 0.67 0.73 0.78
0.40 0.52 0.67 0.75
0.45 0.68 0.79 0.75
];
[m,n]=size(a);
for j=1:nb(:,j)=a(:,j)/norm(a(:,j)); 
end
w=[0.4 0.3 0.1 0.2];
c=b.*repmat(w,m,1); 
Cstar=max(c); 
Cstar(4)=min(c(:,4)) 
Cstar(3)=min(c(:,3))
C0=min(c); 
C0(4)=max(c(:,4)) 
C0(3)=max(c(:,3))
for i=1:mSstar(i)=norm(c(i,:)-Cstar); S0(i)=norm(c(i,:)-C0); 
f=S0./(Sstar+S0);
[sf,ind]=sort(f,'descend') 
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/624344.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spring】SpringBoot 统一功能处理

文章目录 前言1. 拦截器1.1 什么是拦截器1.2 拦截器的使用1.2.1 自定义拦截器1.2.2 注册配置拦截器 1.3 拦截器详解1.3.1 拦截路径1.3.2 拦截器执行流程1.3.3 适配器模式 2. 统一数据返回格式3. 统一异常处理 前言 在日常使用 Spring 框架进行开发的时候,对于一些板…

代码随想录day20

654.最大二叉树 给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下: 二叉树的根是数组中的最大元素。左子树是通过数组中最大值左边部分构造出的最大二叉树。右子树是通过数组中最大值右边部分构造出的最大二叉树。 通过给定的数组构建最大二叉…

《JVM由浅入深学习九】 2024-01-15》JVM由简入深学习提升分(生产项目内存飙升分析)

目录 开头语内存飙升问题分析与案例问题背景:我华为云的一个服务器运行我的一个项目“csdn-automatic-triplet-0.0.1-SNAPSHOT.jar”,由于只是用来测试的服务器,只有2G,所以分配给堆的内存1024M查询内存使用(top指令&a…

Oracle-查询用户下所有表的数据量

一般我们通过count()语句就可以查询单张标的数据量,但是遇到很多情况,查询多张表,数据量特别大的时候,就比较慢,耽搁时间,毕竟开发的时间还是很宝贵的; 也有通过下面的SQL去查询数据量&#xf…

恒温器探针样品座

恒温器探针样品座是一种用采用可移动探针完成恒温器电缆和被测样品的电学连接,避免了每次样品电引线的焊接,探针可移动,5mm--20mm大小的样品均可适用,探针可以安装6个,标准配置探针数量为4个。 恒温器探针样品座由T型…

云渲染农场渲染和自己搭建农场渲染怎么选?哪个更划算?

当我们面临繁重或紧急的渲染任务时,通常会选择云渲染的解决方案。可能很多人会问,我们是否能够自行建立一个小型的个人农场进行渲染呢?与云渲染农场相比,哪个更划算?更方便?接下来就带大家看看…

vue-echarts踩坑,本地开发可以渲染echarts图表,线上环境图表渲染不出来

main.js全局注册v-chart组件 import VueECharts from "vue-echarts"; Vue.component("v-chart", VueECharts);在页面中使用 如上图,我开始写的静态数据,在data中定义了chartOption1:{…配置项…}, 在接口数据返回之后,…

Nodejs基础3之fs模块的文件重命名和移动、文件的删除、文件夹操作、查看资源状态、fs路径

Nodejs基础二 fs模块文件重命名和移动文件的重命名文件的移动同步重命名和移动 文件的删除使用unlink进行删除unlink异步删除unlinkSync同步删除 使用rm进行删除rm异步删除rmSync同步删除 文件夹操作创建文件夹递归创建文件夹 读取文件夹删除文件夹rmdir删除文件夹删除递归文件…

电脑怎么把照片的kb缩小?三种方法帮你解决

电脑怎么把照片的kb缩小?我们在进行上传图片的时候,经常遇到图片太大,请压缩后再上传的情况,这就是我们开头所需要了解的压缩图片大小的方法,图片缩小kb可以通过三种处理方式来达到效果,我们可以直接图片压…

46道java基础知识面试题详解含答案(值得珍藏)

final 有什么用? 用于修饰类、属性和方法;被final修饰的类不可以被继承被final修饰的方法不可以被重写被final修饰的变量不可以被改变,被final修饰不可变的是变量的引用,而不是引用指向的内容,引用指向的内容是可以改…

在线协作白板WBO本地部署启动并结合内网穿透实现远程协同办公

文章目录 推荐前言1. 部署WBO白板2. 本地访问WBO白板3. Linux 安装cpolar4. 配置WBO公网访问地址5. 公网远程访问WBO白板6. 固定WBO白板公网地址 推荐 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击…

【LeetCode: 208. 实现 Trie (前缀树)】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

一分钟带你了解--电商控价

电商行业发展至今带来了许多机遇,但同时也伴随着一些挑战。品牌电商在运营过程中,面临着诸如乱价、低价、窜货和假货等问题,这些问题不仅损害了品牌的形象和价值,也破坏了市场秩序,侵害了消费者的权益。 电商控价是解…

深度探讨 Golang 中并发发送 HTTP 请求的最佳技术

💂 个人网站:【 海拥】【神级代码资源网站】【办公神器】🤟 基于Web端打造的:👉轻量化工具创作平台💅 想寻找共同学习交流的小伙伴,请点击【全栈技术交流群】 在 Golang 领域,并发发送 HTTP 请求…

java常用API(2)

1:String 1.1 String(构造方法) 首先,我们先来学习String类,它涉及到两个案例:用户登录和聊天室。 先来看用户登录案例:需要输入用户名和密码,和已知的用户名和密码进行比较,涉及到比较的方法…

抖音小店如何选品?新手怎么选有潜力的产品?常用选品玩法分享

大家好,我是电商花花。 选品是我们店铺出单的关键,也是我们做电商行业的小伙伴非常关心的一个点。 我们想要选好商品,我们就要先搞清楚,什么样的产品才算是有潜力的产品,什么样的产品才能出单,什么样的产…

使用pandas读取HTML和JSON数据

大家好,Pandas是一个功能强大的数据分析库,它提供了许多灵活且高效的方法来处理和分析数据。本文将介绍如何使用Pandas读取HTML数据和JSON数据,并展示一些常见的应用场景。 一、读取HTML网页 HTML(超文本标记语言)是…

【HTML5】 canvas 绘制图形

文章目录 一、基本用法二、用法详见2.0、方法属性2.1、绘制线条2.2、绘制矩形2.3、绘制圆形2.4、绘制文本2.5、填充图像 一、基本用法 canvas 标签:可用于在网页上绘制图形(使用 JavaScript 在网页上绘制图像)画布是一个矩形区域&#xff0c…

MATLAB R2023b for Mac 中文

MATLAB R2023b 是 MathWorks 发布的最新版本的 MATLAB,适用于进行算法开发、数据可视化、数据分析以及数值计算等任务的工程师和科学家。它包含了一系列新增功能和改进,如改进了数据导入工具,增加了对数据帧和表格对象的支持,增强…

从零到一:设计实现Dubbo分布式服务框架

从零到一:设计实现Dubbo分布式服务框架 前言 Dubbo是一款高性能的Java RPC框架,广泛应用于大规模的分布式系统。本篇博客将详细介绍如何从零开始设计和实现一个简单的Dubbo框架,以便理解Dubbo的核心概念和工作原理。 第一步:定…