实例分割论文精读:Mask R-CNN

1.摘要

本文提出了一种概念简单、灵活、通用的实例分割方法,该方法在有效地检测图像中的物体同时,为每个物体实例生成一个实例分割模板,添加了一个分支,用于预测一个对象遮罩,与现有的分支并行,用于边界框识别,Mask R-CNN易于训练,只给Faster R-CNN增加了很小的开销,运行速度为5fps,另外,Mask R-CNN很容易推广到其他任务,例如,允许我们在同一框架中估计人类姿势,我们展示了COCO系列挑战的所有三个方面的最佳结果,包括实例分割、边界框对象检测以及人类关键点检测,没有任何花里胡哨的东西,Mask R-CNN在每项任务上都优于所有现有的模型参赛作品,包括COCO 2016挑战赛的获胜者。我们希望我们简单而有效的方法将作为一个坚实的基线,并有助于简化实例级识别的未来研究。

2.模型结构图

在这里插入图片描述

3.算法步骤

1.首先,输入一幅你想处理的图片,然后进行对应的预处理操作,或者预处理后的图片;
2.然后,将其输入到一个预训练好的神经网络中(ResNet等)获得对应的feature map
3.接着,对这个feature map中的每一点设定预定个的ROI,从而获得多个候选ROI;
4.接着,将这些候选的ROI送入RPN网络进行二值分类(前景或背景)和BB回归,过滤掉一部分候选的ROI;
5.接着,对这些剩下的ROI进行ROIAlign操作(即先将原图和feature map的pixel对应起来,然后将feature map和固定的feature对应起来);
6.最后,对这些ROI进行分类(N类别分类)、BB回归和Mask生成(在每一个ROI里面进行FCN操作)。

4.模型结构解析

4.1 Mask R-CNN/FPN

在这里插入图片描述
带和不带FPN结构的Mask R-CNN 在Mask分支上略有不同,对于带有FPN结构的Mask R-CNN它的class、box分支和Mask分支并不是共用一个RoIAlign,在训练过程中,对于class, box分支RoIAlign将RPN(Region Proposal Network)得到的Proposals池化到7x7大小,而对于Mask分支RoIAlign将Proposals池化到14x14大小(Mask分支,因为实例分割要保留更多的细节,所以没有池化到77格式,选择池化到1414格式)

4.2 RoIpooling和RoIAlign

Faster RCNN使用RoIPool将RPN得到的Proposal池化到相同大小,过程涉及到取整操作,导致定位不是那么准确(misalignment)
RoI pooling:1.将Proposal映射到特征层上;2.将得到的Proposal强行划分成规定大小(55->22)
RoIAlign:1.不进行四舍五入2.期望输出是22大小的话,将proposal划分为22个子区域,设置sampling_ratio为每个子区域设置采样点,计算每个子区域中采样点的值(双线性插值),最后对每个区域内所有采样点取均值即为该子区域的输出。
在这里插入图片描述
在这里插入图片描述

4.3 Mask分支

FCN中,对待每个像素的每个类别都会预测一个分数,然后通过softmax得到每个类别的概率(不同类别之间存在竞争关系),那个概率高就将像素分配给哪个类别,
在Mask R-CNN中,,对预测Mask以及Class进行解耦,对输入的RoI针对每个类别都单独预测一个Mask,最终根据box, cls分支预测的classes信息来选择对应Proposals:提议、提案、建议,在这里指的是二阶段方法中RPN的输出框,也就是对anchor第一次做回归得到的结果,就是候选框,用RPN生成候选框,然后分类和回归,region proposal指的是候选区域。类别的Mask

5.损失函数

在这里插入图片描述
logits:网络预测的输出
targets:对应的GT
如下图所示,假设通过RPN得到了一个Proposal(图中黑色的矩形框),通过RoIAlign后得到对应的特征信息(shape为14x14xC),接着通过Mask Branch预测每个类别的Mask信息得到图中的logits(logits通过sigmoid激活函数后,所有值都被映射到0至1之间)。通过Fast R-CNN分支正负样本匹配过程我们能够知道该Proposal的GT类别为猫(cat),所以将logits中对应类别猫的预测mask(shape为28x28)提取出来。然后根据Proposal在原图对应的GT上裁剪并缩放到28x28大小,得到图中的GT mask(对应目标区域为1,背景区域为0)。最后计算logits中预测类别为猫的mask与GT mask的BCELoss即可。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/624107.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

零知识证明的最新发展和应用

PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。 当企业收集大量客户数据去审查、改进产品和服务以及将数据资产货币化时,他们容易受到网络攻击威胁,造成数…

RC4加解密源码

本文介绍RC4加解密源码。 RC4(来自Rivest Cipher 4的缩写)是一种流加密算法,密钥长度可变。它加解密使用相同的密钥,因此也属于对称加密算法。RC4具有加解密速度快,算法简单等优点,在算力不高场合&#xf…

昇腾910b部署Chatglm3-6b进行流式输出【pytorch框架】NPU推理

文章目录 准备阶段避坑阶段添加代码结果展示 准备阶段 配套软件包Ascend-cann-toolkit和Ascend-cann-nnae适配昇腾的Pytorch适配昇腾的Torchvision Adapter下载ChatGLM3代码下载chatglm3-6b模型,或在modelscope里下载 避坑阶段 每个人的服务器都不一样&#xff0…

Pixart PAR2861 蓝牙 keyboard 开发笔记

Pixart PAR2861 是一款采用32 bits ARM Cortex-M0 低功耗、高效能 2.4GHz RF 的 SoC。 该 SoC 整合了高效能的 2.4GHz RF 收发器、硬体Keyscan、硬体按键防弹跳、SPI、I2C、PWM LED、ADC、UART等。内建 DC/DC 转换器和 LDO 为独立 HID 应用提供完整的低功耗 SoC 解决方案。 1.…

2023年网络安全事件处罚盘点,文件销毁 硬盘销毁 物料销毁

《中华人民共和国网络安全法》是我国第一部全面规范网络空间安全管理方面问题的基础性法律,是我国网络空间法治建设的重要里程碑,《中华人民共和国网络安全法》从2013年下半年提上日程,到2016年年底颁布,自2017年6月1日起施行&…

滑动登陆注册同页面

这是一个登陆注册在同一个页面滑动选择的页面 技术&#xff1a;html、css、javascript 简单页面实现&#xff08;为了方便&#xff0c;已将代码放在同一文件引用&#xff09;&#xff1a; 1.1、效果图 1.2、完整代码&#xff1a; <!DOCTYPE html> <html lang"…

virtualbox Ubuntu 网络连接

一、网络连接需求1—— 上网&#xff1a; 虚拟机默认的NAT连接方式&#xff0c;几乎不需要怎么配置&#xff0c;即可实现上网。 enp0s17以太网必须要开启&#xff0c;才能上网&#xff1b; 但是主机ping不通虚拟机&#xff0c;貌似可以ping 127.0.0.1; 二、主机和虚拟机相互p…

语境化语言表示模型-ELMO、BERT、GPT、XLnet

一.语境化语言表示模型介绍 语境化语言表示模型&#xff08;Contextualized Language Representation Models&#xff09;是一类在自然语言处理领域中取得显著成功的模型&#xff0c;其主要特点是能够根据上下文动态地学习词汇和短语的表示。这些模型利用了上下文信息&#xf…

DrGraph原理示教 - OpenCV 4 功能 - 形态操作

形态类型 从OpenCV图像处理基本知识来看&#xff0c;膨胀腐蚀操作后&#xff0c;还有形态操作&#xff0c;如开运算、闭运算、梯度、礼帽与黑帽&#xff0c;感觉很多&#xff0c;其实&#xff0c;本质上就是批处理操作&#xff0c;如 开运算&#xff1a;先腐蚀&#xff0c;再膨…

大模型LLM Agent在 Text2SQL 应用上的实践

1.前言 在上篇文章中「如何通过Prompt优化Text2SQL的效果」介绍了基于Prompt Engineering来优化Text2SQL效果的实践&#xff0c;除此之外我们还可以使用Agent来优化大模型应用的效果。 本文将从以下4个方面探讨通过AI Agent来优化LLM的Text2SQL转换效果。 1 Agent概述2 Lang…

肯尼斯·里科《C和指针》第6章 指针(3)

肯尼斯里科《C和指针》第6章 指针&#xff08;1&#xff09;-CSDN博客 肯尼斯里科《C和指针》第6章 指针&#xff08;2&#xff09;-CSDN博客 前置知识&#xff1a;左值右值 为了理解有些操作符存在的限制&#xff0c;必须理解左值(L-value)和右值(R-value)之间的区别。这两个…

2024年百场进校公益安全培训开启

自2023年年底&#xff0c;上海风暴救援队积极策划并推动了2024年的“百场进校传安全”培训项目。经过在东方锦绣于2023年12月14日、上钢新村幼儿园于2023年12月28日的先期测试&#xff0c;项目于2024年1月5日在齐河路幼儿园正式启动。随后&#xff0c;于2024年1月11日在浦南幼儿…

顺序表和链表基础

定义动态的顺序表 typedef int SLDataType; typedef struct Seqlist {SLDataType* array;size_t size;size_t capacity; }Seqlist; 在顺序表中插入数据 bool ListInsert(Seqlist* l, int i, SLDataType e) {if (i < 1 || i > l->capacity)return false;int j;for (…

【大数据进阶第三阶段之Hue学习笔记】Hue的安装和使用

1、 Hue的安装 1.1 上传解压安装包 Hue的安装支持多种方式&#xff0c;包括rpm包的方式进行安装、tar.gz包的方式进行安装以及cloudera manager的方式来进行安装等&#xff0c;我们这里使用tar.gz包的方式来进行安装 Hue的压缩包的下载地址&#xff1a; http://archive.cloude…

python绘制热力图-数据处理-VOC数据类别标签分布及数量统计(-代码)

Python是一种功能强大的编程语言&#xff0c;它提供了许多库和工具&#xff0c;用于处理和可视化数据。在本文中&#xff0c;我们将介绍使用Python绘制热力图&#xff0c;并对VOC数据集中的类别标签进行分布及数量统计。 首先&#xff0c;我们需要导入所需的库。使用numpy库来…

查找算法(部分)

顺序查找 顺序查找是最简单的了&#xff0c;属于无序查找算法&#xff0c;它的原理就是从前往后一个一个的找&#xff0c;如果找到了就返回它的位置&#xff0c;否则就返回-1。 如果有多个相同元素的话&#xff0c;返回第一个该元素的位置。 代码&#xff1a; #include<…

Vue3 中使用 Vuex 和 Pinia 对比之 Vuex的用法

本文基于 Vue3 的 composition API 来展开 Vuex 和 Pinia 的用法比较 Pinia传送门 Vuex传送门 Vuex 状态管理的核心概念 状态- 驱动应用的数据源&#xff1b;视图 - 以声明方式将状态映射到视图&#xff1b;操作 - 响应在视图上的用户输入导致的状态变化 下面是源自Vuex 官…

进口零部件三维模型扫描替换抄数建模逆向造型设计服务CASAIM

三维扫描技术在现代制造业中发挥着越来越重要的作用&#xff0c;尤其在零部件建模领域&#xff0c;它能够快速、准确地获取物体的三维数据&#xff0c;为后续的逆向工程和快速原型制造提供了有力支持。 CASAIM三维扫描仪设备通过对零部件进行三维扫描&#xff0c;我们可以获得…

OpenHarmony4.0适配LVDS屏幕驱动

1.概述 手头有一块RK3568的开发板OK3568-C&#xff0c;但是还没有适配OpenHarmony&#xff0c;用的还是LVDS屏幕&#xff0c;但是官方和网上好像还没有OpenHarmony4.0的LVDS屏幕驱动的通用实现&#xff0c;所以决定尝试了一下适配该开发板&#xff0c;完成LVDS屏幕驱动的适配&…

OpenAIOps社区线上宣讲会圆满召开,期待您的加入!

2024年1月12日“OpenAIOps社区”线上宣讲会圆满召开&#xff0c;群体智慧协同创新社区的创立为AIOps领域未来发展注入了活力。OpenAIOps社区是一个AIOps开源社区及创新平台&#xff0c;由中国计算机学会(CCF)、清华大学、南开大学、中科院、国防科大、必示科技等单位共同发起&a…