机器学习 | 多层感知机MLP

机器学习 | 多层感知机MLP

1. 实验目的

自行构造一个多层感知机,完成对某种类型的样本数据的分类(如图像、文本等),也可以对人工自行构造的二维平面超过3类数据点(或者其它标准数据集)进行分类。

2. 实验内容

  1. 能给出与线性分类器(自行实现)作对比,并分析原因。

  2. 用不同数据量,不同超参数,比较实验效果。

  3. 不许用现成的平台,例如Pytorch,Tensorflow的自动微分工具。

  4. 实现实验结果的可视化。

3. 实验环境

  • Windows11; Anaconda+python3.11; VS Code

4. 实验过程、结果及分析(包括代码截图、运行结果截图及必要的理论支撑等)

4.1 算法理论支撑

4.1.1 神经元模型

如图1所示,在这个模型中,神经元接收到来自 n n n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接(connection)进行传递,神经元接收到的总输入值将与神经元的阈值(偏置)进行比较,然后通过“激活函数”(activation function) 处理以产生神经元的输出。

理想中的激活函数是阶跃函数 s g n ( ∙ ) sgn( \bullet ) sgn(),它将输入值映射为输出值“0”或“1”,显然“1”对应于神经元兴奋,“0”对应于神经元抑制。然而,阶跃函数具有不连续、不光滑等不太好的性质,实际常用Sigmoid、ReLU等函数作为激活函数

把许多个这样的神经元按一定的层次结构连接起来,就得到了神经网络。

在这里插入图片描述

4.1.2 多层感知机模型

多层感知机(Multilayer Perceptron, MLP)是一种前向结构的人工神经网络,映射一组输入向量到一组输出向量,MLP可以被看作是一个有向图,由多个的节点层所组成,每一层都全连接到下一层,除了输入节点,每个节点都是一个带有非线性激活函数的神经元。MLP网络结构包含输入层、输出层及多个隐藏层,其中输入层神经元接收外界输入,隐藏层与输出层神经元对信号进行加工,最终结果由输出层神经元输出。3层感知机的神经网络图如下所示:

在这里插入图片描述

一个MLP可以视为包含了许多参数的数学模型,这个模型是若干个函数 y j = f ( ∑ i w i b i − θ i ) y_{j} = f(\sum_{i}{w_{i}b_{i} - \theta_{i}}) yj=f(iwibiθi) 相互(嵌套)代入得到的。而对于给定由 d d d个属性描述,输出为 l l l维实值向量的训练集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x m , y m ) ) , x ∈ R d , y ∈ R l D = \left\{ {(x}_{1},y_{1} \right),{(x}_{2},y_{2}),\ldots,{(x}_{m},y_{m})),x \in \mathbb{R}^{d},y \in \mathbb{R}^{l} D={(x1,y1),(x2,y2),,(xm,ym)),xRd,yRl,则隐藏层第 h h h个神经元接收到的输入为 α h = ∑ i = 1 d v i h x i \alpha_{h} = \sum_{i = 1}^{d}{v_{ih}x_{i}} αh=i=1dvihxi,输出层第 j j j个神经元接收到的输入为 α h = ∑ h = 1 q w h j b h \alpha_{h} = \sum_{h = 1}^{q}{w_{hj}b_{h}} αh=h=1qwhjbh。假设神经元激活函数为 σ ( ∙ ) \sigma( \bullet ) σ()

在这里插入图片描述

模型训练主要包括前馈传播和反向传播两个步骤,前馈传播负责计算模型的预测值,而反向传播负责计算梯度并更新模型的参数,降低损失函数,以便在训练中不断改进模型的性能。

具体而言,前馈传播是神经网络中的正向计算过程,它从输入层开始,沿着网络的层级顺序将数据传递到输出层,从而计算模型的预测值,但此过程并不涉及权重和偏差的更新,即计算

y k = g { ∑ j = 1 m w k j ( s ) ⋯ [ a ( ∑ i = 1 n w j i ( 1 ) x i + b j ( 1 ) ) ] ⋯ + b k ( s ) } , k = 1 , 2 , ⋯ , l y_{k} = g\left\{ \sum_{j = 1}^{m}w_{kj}^{(s)}\cdots\left\lbrack a\left( \sum_{i = 1}^{n}{w_{ji}^{(1)}x_{i}} + b_{j}^{(1)} \right) \right\rbrack\cdots + b_{k}^{(s)} \right\},k = 1,2,\cdots\text{ },l yk=g{j=1mwkj(s)[a(i=1nwji(1)xi+bj(1))]+bk(s)},k=1,2,,l

反向传播则是使用前馈传播计算模型的输出,并将其与实际目标进行比较,计算损失(误差)。


ALGORITHM 1 Backpropagation(反向传播算法)

  1. input f ( x ; θ ) ← f(x;\theta) \leftarrow f(x;θ)神经网络, θ ← \theta \leftarrow θ参数向量, ( x ′ , y ′ ) ← (x^{'},y^{'}) \leftarrow (x,y)样本, η ← \eta \leftarrow η学习率;
  2. for t = 1 , 2 , … , s t = 1,2,\ldots,s t=1,2,,s do # 正向传播
  3. h ( 0 ) = x ′ ; h ( t ) = a ( W ( t ) h ( t − 1 ) + b ( t ) ) h^{(0)} = \ x^{'};h^{(t)} = a\left( W^{(t)}h^{(t - 1)} + b^{(t)} \right) h(0)= x;h(t)=a(W(t)h(t1)+b(t)) a ( ∙ ) a( \bullet ) a()为激活函数)
  4. for t = s , s − 1 , … , 1 t = s,s - 1,\ldots,1 t=s,s1,,1 do # 反向传播
  5. δ ( s ) = h ( s ) − y ′ ; ∇ W ( t ) L = δ ( t ) ⋅ h ( t − 1 ) T , ∇ b ( t ) L = δ ( t ) \delta^{(s)} = h^{(s)} - y^{'};\ \nabla_{W^{(t)}}L = \delta^{(t)} \cdot h^{(t - 1)^{T}},\nabla_{b^{(t)}}L = \delta^{(t)} δ(s)=h(s)y; W(t)L=δ(t)h(t1)T,b(t)L=δ(t)
  6. W n e w ( t ) ← W ( t ) − η ∇ W ( t ) L , b n e w ( t ) ← b ( t ) − η ∇ b ( t ) L W_{new}^{(t)} \leftarrow W^{(t)} - \eta\nabla_{W^{(t)}L},b_{new}^{(t)} \leftarrow b^{(t)} - \eta\nabla_{b^{(t)}L} Wnew(t)W(t)ηW(t)L,bnew(t)b(t)ηb(t)L
  7. if t > 1 t > 1 t>1 do: δ ( t − 1 ) = ∂ a ∂ z j ( t − 1 ) ⨀ ( W ( t ) T ∙ δ ( t ) ) \delta^{(t - 1)} = \frac{\partial a}{\partial z_{j}^{(t - 1)}}\bigodot\left( {W^{(t)}}^{T} \bullet \delta^{(t)} \right) δ(t1)=zj(t1)a(W(t)Tδ(t))
  8. return θ \theta θ

基于梯度下降GD或随机梯度下降SGD的学习算法的核心是针对给定样本,计算损失函数对神经网络所有参数的梯度 ∂ L ∂ θ \frac{\partial L}{\partial\theta} θL,并以此更新所有参数 θ \theta θ。考虑一个 s s s层神经网络,其中第 t t t层的神经元定义为:

h j ( t ) = a ( z j ( t ) ) , z j ( t ) = ∑ i = 1 n w j i ( t ) h i ( t − 1 ) + b j ( t ) , j = 1 , 2 , ⋯ , m h_{j}^{(t)} = a\left( z_{j}^{(t)} \right),z_{j}^{(t)} = \sum_{i = 1}^{n}{w_{ji}^{(t)}h_{i}^{(t - 1)}} + b_{j}^{(t)},j = 1,2,\cdots\text{ },m hj(t)=a(zj(t)),zj(t)=i=1nwji(t)hi(t1)+bj(t),j=1,2,,m

损失函数对第 t t t层的权重和偏置的梯度分别为 ∂ L ∂ w j i ( t ) \frac{\partial L}{\partial w_{ji}^{(t)}} wji(t)L ∂ L ∂ b j ( t ) \frac{\partial L}{\partial b_{j}^{(t)}} bj(t)L。根据链式求导规则,可以展开为:

∂ L ∂ w j i ( t ) = ∂ L ∂ z j ( t ) ∂ z j ( t ) ∂ w j i ( t ) , ∂ L ∂ b j ( t ) = ∂ L ∂ z j ( t ) ∂ z j ( t ) ∂ b j ( t ) \frac{\partial L}{\partial w_{ji}^{(t)}} = \frac{\partial L}{\partial z_{j}^{(t)}}\frac{\partial z_{j}^{(t)}}{\partial w_{ji}^{(t)}},\ \ \frac{\partial L}{\partial b_{j}^{(t)}} = \frac{\partial L}{\partial z_{j}^{(t)}}\frac{\partial z_{j}^{(t)}}{\partial b_{j}^{(t)}} wji(t)L=zj(t)Lwji(t)zj(t),  bj(t)L=zj(t)Lbj(t)zj(t)

考虑损失函数对第 t t t层的净输入的梯度 δ j ( t ) = ∂ L ∂ z j ( t ) , j = 1 , 2 , ⋯ , m \delta_{j}^{(t)} = \frac{\partial L}{\partial z_{j}^{(t)}},j = 1,2,\cdots\text{ },m δj(t)=zj(t)L,j=1,2,,m,则上式可写成:

∂ L ∂ w j i ( t ) = δ j ( t ) h i ( t − 1 ) , ∂ L ∂ b j ( t ) = δ j ( t ) \frac{\partial L}{\partial w_{ji}^{(t)}} = \delta_{j}^{(t)}h_{i}^{(t - 1)},\ \ \frac{\partial L}{\partial b_{j}^{(t)}} = \delta_{j}^{(t)} wji(t)L=δj(t)hi(t1),  bj(t)L=δj(t)

而对于第 t t t层的 δ j ( t ) \delta_{j}^{(t)} δj(t),可展开为

δ j ( t ) = ∂ L ∂ z j ( t ) = ∑ k = 1 l ∂ L ∂ z k ( t + 1 ) ∂ z k ( t + 1 ) ∂ z j ( t ) , j = 1 , 2 , ⋯ , m \delta_{j}^{(t)} = \frac{\partial L}{\partial z_{j}^{(t)}} = \sum_{k = 1}^{l}{\frac{\partial L}{\partial z_{k}^{(t + 1)}}\frac{\partial z_{k}^{(t + 1)}}{\partial z_{j}^{(t)}}},j = 1,2,\cdots\text{ },m δj(t)=zj(t)L=k=1lzk(t+1)Lzj(t)zk(t+1),j=1,2,,m

求解得到 δ j ( t ) = d a d z j ( t ) ∑ k = 1 l w k j ( t + 1 ) δ k ( t + 1 ) \delta_{j}^{(t)} = \frac{da}{dz_{j}^{(t)}}\sum_{k = 1}^{l}{w_{kj}^{(t + 1)}\delta_{k}^{(t + 1)}} δj(t)=dzj(t)dak=1lwkj(t+1)δk(t+1)。其中, d a d z j ( t ) \frac{da}{dz_{j}^{(t)}} dzj(t)da为第 t t t层激活函数关于 z j ( t ) z_{j}^{(t)} zj(t)的导数。也就是说可以根据 t + 1 t + 1 t+1层的 δ k ( t + 1 ) \delta_{k}^{(t + 1)} δk(t+1)计算 δ j ( t ) \delta_{j}^{(t)} δj(t)

多分类问题中,输出层由 l l l个输出表示 l l l个类别的概率。损失函数是交叉熵损失 − ∑ k = 1 l y k log ⁡ h k ( s ) - \sum_{k = 1}^{l}{y_{k}\log h_{k}^{(s)}} k=1lykloghk(s),激活函数是Softmax函数 g ( z ) = e z ∑ z ′ e z ′ g(z) = \frac{e^{z}}{\sum_{z^{'}}^{}e^{z^{'}}} g(z)=zezez,此时误差是

δ k ( s ) = h k ( s ) − y k , k = 1 , 2 , ⋯ , l \delta_{k}^{(s)} = h_{k}^{(s)} - y_{k},\ k = 1,2,\cdots\text{ },l δk(s)=hk(s)yk, k=1,2,,l

而后从输出层开始基于链式法则计算损失对每个权重和偏差的梯度,使用Adam、SGD等优化算法来更新网络中的权重和偏差,以减小损失函数的值。

通过反复迭代前馈传播和反向传播过程,多层感知机可以逐渐调整其权重和偏差,从而提高对输入数据的表示能力和泛化能力。

4.2 实验设计

4.2.1 数据处理

读入数据,标签采用独热编码( 1 o f K 1\ of\ K 1 of K)。

在这里插入图片描述

4.2.2 权重初始化

使用np.random.randn方法随机初始化神经元之间的连接矩阵 w w w和偏置 b b b,同时初始化各层神经元为 h ( i ) h^{(i)} h(i)以保存中间结果(包含输入输出层)

在这里插入图片描述

4.2.3 前向传播

将输入 w w w赋值给 h ( 0 ) h^{(0)} h(0),随后逐层计算 a ( W ( t ) h ( t − 1 ) + b ( t ) ) a\left( W^{(t)}h^{(t - 1)} + b^{(t)} \right) a(W(t)h(t1)+b(t)),使用函数类保存中间结果,同时返回最终输出层 h ( s ) h^{(s)} h(s)。实验激活函数采用sigmoidsoftmax函数。

在这里插入图片描述

4.2. 反向传播

给定最终标签计算当前预测值的损失和梯度 δ ( s ) = h ( s ) − y ′ \delta^{(s)} = h^{(s)} - y^{'} δ(s)=h(s)y。随后按 W n e w ( t ) ← W ( t ) − η ∇ W ( t ) L , b n e w ( t ) ← b ( t ) − η ∇ b ( t ) L , δ ( t − 1 ) = ∂ a ∂ z j ( t − 1 ) ⨀ ( W ( t ) T ∙ δ ( t ) ) W_{new}^{(t)} \leftarrow W^{(t)} - \eta\nabla_{W^{(t)}L},b_{new}^{(t)} \leftarrow b^{(t)} - \eta\nabla_{b^{(t)}L},\delta^{(t - 1)} = \frac{\partial a}{\partial z_{j}^{(t - 1)}}\bigodot\left( {W^{(t)}}^{T} \bullet \delta^{(t)} \right) Wnew(t)W(t)ηW(t)L,bnew(t)b(t)ηb(t)L,δ(t1)=zj(t1)a(W(t)Tδ(t))依层记录梯度和参数并返回。

在这里插入图片描述

4.2.5 随机梯度下降

使用random.shuffle方法打乱数据,每次取数据中的前batch_size组使用前向传播和反向传播计算更新梯度和偏置,随后取算数平均对参数进行更新。

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/602d8e5847ca4c3c9e75ebffc52aaf2a.png

随后设置迭代次数,重复上述步骤,即可训练得到可以分类的神经网络。

4.2.6 Softmax回归

使用和逻辑回归相似的Softmax回归构造线性分类器,和逻辑回归唯一不同的地方在于,由于此问题中对应的是多分类问题,因此Softmax回归最后改用Softmax()替代Sigmoid()进行概率的选择。其余交叉熵损失函数及梯度下降求导的式子完全一致。

4.3 实验结果及分析

4.3.1 实验结果

在本次实验中,使用神经元数目分别为 784 , 100 , 10 784,100,10 784,100,10的三层感知机,采用Sigmoid函数作为激活函数和Softmax函数对MNIST数据集进行分类。

使用交叉熵损失函数和SGD优化器,将模型输入通道根据数据集设为1,并设置训练超参数epoch为100,batch size为256(相当于只用了25600组训练数据),学习率learning rate为0.1。训练过程中损失函数loss的值和在测试集上的准确率变化如下图所示。

在这里插入图片描述

实验发现,随训练过程的进行,损失函数不断降低,在测试集上准确率逐渐升高,最终测试正确率最高能够达到约92%。损失函数和测试准确率在训练最后阶段呈现波动态,可能原因是在局部最优点附近振荡。

5. 实验结论

多层感知机模型是矩阵与向量的乘积的非线性变换的多次重复,其核心在与引入了非线性因素,能够学习和捕捉复杂的非线性关系,其基本结构较为简单,其具有较强的表达能力,可适应图像分类、识别等多种人工智能任务。

Softmax回归相当于2层(只有输入输出层)的多层感知机,没有引入非线性因素,在一定程度上对数据更为敏感,且对非线性问题表达能力较弱。

选择合适的学习率能够减少模型训练的时间,但梯度下降法较难收敛,提高训练轮次可能会提供模型的能力。同时,合适的权重初始化也能减少模型的训练时间和提高模型的训练效果。

但是,单纯加深模型深度没有特别大的意义,除了训练时间会增加,还可能会出现梯度消失或者梯度爆炸等问题,可以考虑引入残差等结构。

6. 参考文献

[1] 李航. 统计学习方法[M]. 清华大学出版社, 2012.

[2] 周志华. 机器学习[M]. 清华大学出版社, 2016.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/623848.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hadoop 3.2.4 集群搭建详细图文教程

一、集群简介 Hadoop 集群包括两个集群:HDFS 集群、YARN 集群。两个集群逻辑上分离、通常物理上在一起;两个集群都是标准的主从架构集群。逻辑上分离 两个集群互相之间没有依赖、互不影响 物理上在一起 某些角色进程往往部署在同一台物理服务器上 MapR…

Open3D (C++) 计算条件数

目录 一、算法原理1、条件数2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、条件数 条件数法是目前应用最为广泛的一种病态诊断方法。条件数的定义为:

基于RNN的模型

文本数据是一种典型的具有序列结构的数据,因为文本通常是由一系列的词语或字符组成的序列。每个词语或字符在文本中都有特定的位置和顺序,这种有序的结构对于理解和处理文本的含义至关重要。因此,多数情况下需要使用时间序列建模来完成相应的…

HX711压力传感器学习一(STM32)

目录 原理图:​ 引脚介绍: HX711介绍工作原理: 程序讲解: 整套工程: 发送的代码工程,与博客的不一致,如果编译有报错请按照报错和博客进行修改 原理图: 引脚介绍: VCC和GND引…

计算机体系结构基础复习

1. 计算机系统可划分为哪几个层次,各层次之间的界面是什么? 你认为这样划分层次的意义何在? 答: 计算机系统可划分为四个层次,分别是:应用程序、 操作系统、 硬件系统、 晶体管四个大的层次。 注意把这四个层次联系起来的三个界面。各层次…

gateway Redisson接口级别限流解决方案

文章目录 前言1. 计数器算法(固定窗口限流器)2. 滑动窗口日志限流器3. 漏桶算法(Leaky Bucket)4. 令牌桶算法(Token Bucket)5. 限流队列应用场景实现工具 一、Redisson简介二、Redisson限流器的原理三、Red…

面向对象三大特征之三:多态--java学习笔记

什么是多态 多态是在继承/实现情况下的一种现象,表现为:对象多态、行为多态 对象多态:举个栗子,比如一个人,他可以是一个老师,也可以是一个歌手,也可以是一个丈夫...... 行为多态:举…

PHP反序列化总结4--原生类总结

原生类的简要介绍以及原生类和反序列化的关系 PHP 原生类指的是 PHP 内置的类,它们可以直接在 PHP 代码中使用且无需安装或导入任何库,相当于代码中的内置方法例如echo ,print等等可以直接调用,但是原生类就是可以就直接php中直接…

jmeter分布式服务搭建

目录 一、环境准备 二、 安装包下载 三 、安装jdk 四 、控制机安装 4.1 解压压缩包 4.2 修改 bin/jmeter.properties 4.3 修改 bin/system.properties 五、执行机安装 5.1 解压安装包 5.2 修改 bin/jmeter.properties 5.3 修改 bin/system.properties 5.4 启动执行机 …

关于如何禁用、暂停或退出OneDrive等操作,看这篇文件就够了

​想知道如何禁用OneDrive?你可以暂停OneDrive的文件同步,退出应用程序,阻止它在启动时打开,或者永远从你的机器上删除该应用程序。我们将向你展示如何在Windows计算机上完成所有这些操作。 如何在Windows上关闭OneDrive 有多种方法可以防止OneDrive在你的电脑上妨碍你。…

堆排序——高效解决TOP-K问题

. 个人主页:晓风飞 专栏:数据结构|Linux|C语言 路漫漫其修远兮,吾将上下而求索 文章目录 引言什么是堆?建堆堆排序:排序的最终结果 堆排序实现函数声明交换函数 Swap下沉调整 DnAdd堆排序函数 HeapSort主函数 文件中找…

SpringBoot+Vue实现对称加密和非对称加密

我们先来了解一下什么是对称加密和非对称加密,以及两者的优缺点 对称加密 使用同一个密钥对消息进行加密解密 优点:加密和解密的速度快,适合于数据量大的加解密 缺点:密钥在网络传输中可能被泄露,因此安全性相对较低…

C++核心编程三:函数提高(持续更新)

🌈个人主页:godspeed_lucip 🔥 系列专栏:C从基础到进阶 🌙C核心编程🌏1 函数提高🎄1.1 函数默认参数🎄1.2 函数占位参数🎄1.3 函数重载🍉1.3.1 函数重载概述&…

护眼灯有蓝光吗?防蓝光护眼台灯推荐

护眼台灯是家长为孩子购买的常见用品之一,但对于它的了解却不够深入,很多人购买之后反而容易出现眼睛疲劳、不适的情况!据了解,主要的原因是因为在选择护眼台灯时,大多数人没有专业知识,没有买到合适的护眼…

012集:三目运算符实例讲解(if else)及for、while循环—python基础入门实例

Python也有自己的三目运算符: 条件为真时的结果 if 判段的条件 else 条件为假时的结果 即:Python可以通过if语句来实现三目运算符的功能,因此可以把这种if语句当做三目运算符,具体语法格式如下: 返回True执行 if 表达…

Github搭建图床 github搭建静态资源库 免费CDN加速 github搭建图床使用 jsdelivr CDN免费加速访问

Github搭建图床 github搭建静态资源库 免费CDN加速 github搭建图床使用 jsdelivr CDN免费加速访问 前言1、创建仓库2、开启 gh-pages页面功能3、访问测试 前言 写博客文章时,图片的上传和存放是一个问题,使用小众第三方图床,怕不稳定和倒闭&…

.net core IResultFilter 的 OnResultExecuted和OnResultExecuting的区别

//全局过滤器 builder.Services.AddMvc(m > { m.Filters.Add<AllResultFilter>(); }); 1、实现过滤器 public class AllResultFilter : IResultFilter {/// <summary>/// 结果执行后方法/// 不可更改结果/// </summary>/// <param name"con…

springboot+mysql大学生就业推荐系统-计算机毕业设计源码01535

摘 要 信息化社会内需要与之针对性的信息获取途径&#xff0c;但是途径的扩展基本上为人们所努力的方向&#xff0c;由于站在的角度存在偏差&#xff0c;人们经常能够获得不同类型信息&#xff0c;这也是技术最为难以攻克的课题。针对学生就业管理等问题&#xff0c;对学生就业…

扒开MySQL的源码,探索MVCC实现方式

下载MySQL源码 没有什么比源码更靠谱的了&#xff0c;所以我们先把源码下载下来&#xff0c;后期验证使用MySQL源码下载 MVCC是什么 mvvc全称是multi-version concurrency control&#xff08;多版本并发控制&#xff09;&#xff0c;主要用于处理读写并发冲突的问题。 MVC…

大数据开发之Hive(企业级调优)

第 10 章&#xff1a;企业级调优 创建测试用例 1、建大表、小表和JOIN后表的语句 // 创建大表 create table bigtable(id bigint, t bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by \t; //…