测试部分代码
import argparse
import json
import os
from pathlib import Path
from threading import Threadimport numpy as np
import torch
import yaml
from tqdm import tqdmfrom models. experimental import attempt_load
from utils. datasets import create_dataloader
from utils. general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
from utils. metrics import ap_per_class, ConfusionMatrix
from utils. plots import plot_images, output_to_target, plot_study_txt
from utils. torch_utils import select_device, time_synchronized, TracedModeldef test ( data, weights= None , batch_size= 32 , imgsz= 640 , conf_thres= 0.001 , iou_thres= 0.6 , save_json= False , single_cls= False , augment= False , verbose= False , model= None , dataloader= None , save_dir= Path( '' ) , save_txt= False , save_hybrid= False , save_conf= False , plots= True , wandb_logger= None , compute_loss= None , half_precision= True , trace= False , is_coco= False , v5_metric= False ) : training = model is not None if training: device = next ( model. parameters( ) ) . device else : set_logging( ) device = select_device( opt. device, batch_size= batch_size) save_dir = Path( increment_path( Path( opt. project) / opt. name, exist_ok= opt. exist_ok) ) ( save_dir / 'labels' if save_txt else save_dir) . mkdir( parents= True , exist_ok= True ) model = attempt_load( weights, map_location= device) gs = max ( int ( model. stride. max ( ) ) , 32 ) imgsz = check_img_size( imgsz, s= gs) if trace: model = TracedModel( model, device, imgsz) half = device. type != 'cpu' and half_precision if half: model. half( ) model. eval ( ) if isinstance ( data, str ) : is_coco = data. endswith( 'coco.yaml' ) with open ( data) as f: data = yaml. load( f, Loader= yaml. SafeLoader) check_dataset( data) nc = 1 if single_cls else int ( data[ 'nc' ] ) iouv = torch. linspace( 0.5 , 0.95 , 10 ) . to( device) niou = iouv. numel( ) log_imgs = 0 if wandb_logger and wandb_logger. wandb: log_imgs = min ( wandb_logger. log_imgs, 100 ) if not training: if device. type != 'cpu' : model( torch. zeros( 1 , 3 , imgsz, imgsz) . to( device) . type_as( next ( model. parameters( ) ) ) ) task = opt. task if opt. task in ( 'train' , 'val' , 'test' ) else 'val' dataloader = create_dataloader( data[ task] , imgsz, batch_size, gs, opt, pad= 0.5 , rect= True , prefix= colorstr( f' { task} : ' ) ) [ 0 ] if v5_metric: print ( "Testing with YOLOv5 AP metric..." ) seen = 0 confusion_matrix = ConfusionMatrix( nc= nc) names = { k: v for k, v in enumerate ( model. names if hasattr ( model, 'names' ) else model. module. names) } coco91class = coco80_to_coco91_class( ) s = ( '%20s' + '%12s' * 6 ) % ( 'Class' , 'Images' , 'Labels' , 'P' , 'R' , 'mAP@.5' , 'mAP@.5:.95' ) p, r, f1, mp, mr, map50, map , t0, t1 = 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. loss = torch. zeros( 3 , device= device) jdict, stats, ap, ap_class, wandb_images = [ ] , [ ] , [ ] , [ ] , [ ] for batch_i, ( img, targets, paths, shapes) in enumerate ( tqdm( dataloader, desc= s) ) : img = img. to( device, non_blocking= True ) img = img. half( ) if half else img. float ( ) img /= 255.0 targets = targets. to( device) nb, _, height, width = img. shape with torch. no_grad( ) : t = time_synchronized( ) out, train_out = model( img, augment= augment) t0 += time_synchronized( ) - tif compute_loss: loss += compute_loss( [ x. float ( ) for x in train_out] , targets) [ 1 ] [ : 3 ] targets[ : , 2 : ] *= torch. Tensor( [ width, height, width, height] ) . to( device) lb = [ targets[ targets[ : , 0 ] == i, 1 : ] for i in range ( nb) ] if save_hybrid else [ ] t = time_synchronized( ) out = non_max_suppression( out, conf_thres= conf_thres, iou_thres= iou_thres, labels= lb, multi_label= True ) t1 += time_synchronized( ) - tfor si, pred in enumerate ( out) : labels = targets[ targets[ : , 0 ] == si, 1 : ] nl = len ( labels) tcls = labels[ : , 0 ] . tolist( ) if nl else [ ] path = Path( paths[ si] ) seen += 1 if len ( pred) == 0 : if nl: stats. append( ( torch. zeros( 0 , niou, dtype= torch. bool ) , torch. Tensor( ) , torch. Tensor( ) , tcls) ) continue predn = pred. clone( ) scale_coords( img[ si] . shape[ 1 : ] , predn[ : , : 4 ] , shapes[ si] [ 0 ] , shapes[ si] [ 1 ] ) if save_txt: gn = torch. tensor( shapes[ si] [ 0 ] ) [ [ 1 , 0 , 1 , 0 ] ] for * xyxy, conf, cls in predn. tolist( ) : xywh = ( xyxy2xywh( torch. tensor( xyxy) . view( 1 , 4 ) ) / gn) . view( - 1 ) . tolist( ) line = ( cls, * xywh, conf) if save_conf else ( cls, * xywh) with open ( save_dir / 'labels' / ( path. stem + '.txt' ) , 'a' ) as f: f. write( ( '%g ' * len ( line) ) . rstrip( ) % line + '\n' ) if len ( wandb_images) < log_imgs and wandb_logger. current_epoch > 0 : if wandb_logger. current_epoch % wandb_logger. bbox_interval == 0 : box_data = [ { "position" : { "minX" : xyxy[ 0 ] , "minY" : xyxy[ 1 ] , "maxX" : xyxy[ 2 ] , "maxY" : xyxy[ 3 ] } , "class_id" : int ( cls) , "box_caption" : "%s %.3f" % ( names[ cls] , conf) , "scores" : { "class_score" : conf} , "domain" : "pixel" } for * xyxy, conf, cls in pred. tolist( ) ] boxes = { "predictions" : { "box_data" : box_data, "class_labels" : names} } wandb_images. append( wandb_logger. wandb. Image( img[ si] , boxes= boxes, caption= path. name) ) wandb_logger. log_training_progress( predn, path, names) if wandb_logger and wandb_logger. wandb_run else None if save_json: image_id = int ( path. stem) if path. stem. isnumeric( ) else path. stembox = xyxy2xywh( predn[ : , : 4 ] ) box[ : , : 2 ] -= box[ : , 2 : ] / 2 for p, b in zip ( pred. tolist( ) , box. tolist( ) ) : jdict. append( { 'image_id' : image_id, 'category_id' : coco91class[ int ( p[ 5 ] ) ] if is_coco else int ( p[ 5 ] ) , 'bbox' : [ round ( x, 3 ) for x in b] , 'score' : round ( p[ 4 ] , 5 ) } ) correct = torch. zeros( pred. shape[ 0 ] , niou, dtype= torch. bool , device= device) if nl: """predn: {x1, y1, x2, y2, conf, cls}tensor([[319.32043, 43.82351, 426.80283, 110.60916, 0.90186, 17.00000],[ 84.76453, 36.17760, 120.57571, 67.90933, 0.65967, 19.00000],[3.41989, 57.74736, 94.48680, 110.90230, 0.51758, 8.00000]], device='cuda:0')labels: {cls, x, y, w, h}tensor([[ 19.00000, 148.48001, 75.52252, 44.80000, 46.05405],[ 17.00000, 492.80002, 106.86487, 139.51996, 88.27026],[ 17.00000, 79.36000, 124.77477, 124.16000, 52.45045]], device='cuda:0')tobx: {x1, y1, x2, y2}tensor([[ 86.04846, 34.00000, 121.06818, 70.00000],[318.17920, 42.00001, 427.24057, 111.00000],[1.00056, 70.00000, 98.05522, 111.00000]], device='cuda:0')tcls_tensor: {cls}tensor([19., 17., 17.], device='cuda:0')""" detected = [ ] tcls_tensor = labels[ : , 0 ] tbox = xywh2xyxy( labels[ : , 1 : 5 ] ) scale_coords( img[ si] . shape[ 1 : ] , tbox, shapes[ si] [ 0 ] , shapes[ si] [ 1 ] ) if plots: confusion_matrix. process_batch( predn, torch. cat( ( labels[ : , 0 : 1 ] , tbox) , 1 ) ) confusion_matrix. plot( save_dir= save_dir, names= list ( names. values( ) ) ) stats = [ np. concatenate( x, 0 ) for x in zip ( * stats) ] if len ( stats) and stats[ 0 ] . any ( ) : p, r, ap, f1, ap_class = ap_per_class( * stats, plot= plots, v5_metric= v5_metric, save_dir= save_dir, names= names) ap50, ap = ap[ : , 0 ] , ap. mean( 1 ) mp, mr, map50, map = p. mean( ) , r. mean( ) , ap50. mean( ) , ap. mean( ) nt = np. bincount( stats[ 3 ] . astype( np. int64) , minlength= nc) else : nt = torch. zeros( 1 ) pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 print ( pf % ( 'all' , seen, nt. sum ( ) , mp, mr, map50, map ) ) if ( verbose or ( nc < 50 and not training) ) and nc > 1 and len ( stats) : for i, c in enumerate ( ap_class) : print ( pf % ( names[ c] , seen, nt[ c] , p[ i] , r[ i] , ap50[ i] , ap[ i] ) ) t = tuple ( x / seen * 1E3 for x in ( t0, t1, t0 + t1) ) + ( imgsz, imgsz, batch_size) if not training: print ( 'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) if plots: confusion_matrix. plot( save_dir= save_dir, names= list ( names. values( ) ) ) if wandb_logger and wandb_logger. wandb: val_batches = [ wandb_logger. wandb. Image( str ( f) , caption= f. name) for f in sorted ( save_dir. glob( 'test*.jpg' ) ) ] wandb_logger. log( { "Validation" : val_batches} ) if wandb_images: wandb_logger. log( { "Bounding Box Debugger/Images" : wandb_images} ) if save_json and len ( jdict) : w = Path( weights[ 0 ] if isinstance ( weights, list ) else weights) . stem if weights is not None else '' anno_json = './coco/annotations/instances_val2017.json' pred_json = str ( save_dir / f" { w} _predictions.json" ) print ( '\nEvaluating pycocotools mAP... saving %s...' % pred_json) with open ( pred_json, 'w' ) as f: json. dump( jdict, f) try : from pycocotools. coco import COCOfrom pycocotools. cocoeval import COCOevalanno = COCO( anno_json) pred = anno. loadRes( pred_json) eval = COCOeval( anno, pred, 'bbox' ) if is_coco: eval . params. imgIds = [ int ( Path( x) . stem) for x in dataloader. dataset. img_files] eval . evaluate( ) eval . accumulate( ) eval . summarize( ) map , map50 = eval . stats[ : 2 ] except Exception as e: print ( f'pycocotools unable to run: { e} ' ) model. float ( ) if not training: s = f"\n { len ( list ( save_dir. glob( 'labels/*.txt' ) ) ) } labels saved to { save_dir / 'labels' } " if save_txt else '' print ( f"Results saved to { save_dir} { s} " ) maps = np. zeros( nc) + map for i, c in enumerate ( ap_class) : maps[ c] = ap[ i] return ( mp, mr, map50, map , * ( loss. cpu( ) / len ( dataloader) ) . tolist( ) ) , maps, tif __name__ == '__main__' : parser = argparse. ArgumentParser( prog= 'test.py' ) parser. add_argument( '--weights' , nargs= '+' , type = str , default= 'runs/train/exp10/weights/best.pt' , help = 'model.pt path(s)' ) parser. add_argument( '--data' , type = str , default= 'data/voc.yaml' , help = '*.data path' ) parser. add_argument( '--batch-size' , type = int , default= 1 , help = 'size of each image batch' ) parser. add_argument( '--img-size' , type = int , default= 640 , help = 'inference size (pixels)' ) parser. add_argument( '--conf-thres' , type = float , default= 0.5 , help = 'object confidence threshold' ) parser. add_argument( '--iou-thres' , type = float , default= 0.65 , help = 'IOU threshold for NMS' ) parser. add_argument( '--task' , default= 'test' , help = 'train, val, test, speed or study' ) parser. add_argument( '--device' , default= '0' , help = 'cuda device, i.e. 0 or 0,1,2,3 or cpu' ) parser. add_argument( '--single-cls' , action= 'store_true' , help = 'treat as single-class dataset' ) parser. add_argument( '--augment' , action= 'store_true' , help = 'augmented inference' ) parser. add_argument( '--verbose' , action= 'store_true' , help = 'report mAP by class' ) parser. add_argument( '--save-txt' , action= 'store_true' , help = 'save results to *.txt' ) parser. add_argument( '--save-hybrid' , action= 'store_true' , help = 'save label+prediction hybrid results to *.txt' ) parser. add_argument( '--save-conf' , action= 'store_true' , help = 'save confidences in --save-txt labels' ) parser. add_argument( '--save-json' , action= 'store_true' , help = 'save a cocoapi-compatible JSON results file' ) parser. add_argument( '--project' , default= 'runs/test' , help = 'save to project/name' ) parser. add_argument( '--name' , default= 'yolov7_640_val' , help = 'save to project/name' ) parser. add_argument( '--exist-ok' , action= 'store_true' , help = 'existing project/name ok, do not increment' ) parser. add_argument( '--no-trace' , action= 'store_true' , help = 'don`t trace model' ) parser. add_argument( '--v5-metric' , action= 'store_true' , help = 'assume maximum recall as 1.0 in AP calculation' ) opt = parser. parse_args( ) opt. save_json | = opt. data. endswith( 'coco.yaml' ) opt. data = check_file( opt. data) print ( opt) if opt. task in ( 'train' , 'val' , 'test' ) : test( opt. data, opt. weights, opt. batch_size, opt. img_size, opt. conf_thres, opt. iou_thres, opt. save_json, opt. single_cls, opt. augment, opt. verbose, save_txt= opt. save_txt | opt. save_hybrid, save_hybrid= opt. save_hybrid, save_conf= opt. save_conf, trace= not opt. no_trace, v5_metric= opt. v5_metric) elif opt. task == 'speed' : for w in opt. weights: test( opt. data, w, opt. batch_size, opt. img_size, 0.25 , 0.45 , save_json= False , plots= False , v5_metric= opt. v5_metric) elif opt. task == 'study' : x = list ( range ( 256 , 1536 + 128 , 128 ) ) for w in opt. weights: f = f'study_ { Path( opt. data) . stem} _ { Path( w) . stem} .txt' y = [ ] for i in x: print ( f'\nRunning { f} point { i} ...' ) r, _, t = test( opt. data, w, opt. batch_size, i, opt. conf_thres, opt. iou_thres, opt. save_json, plots= False , v5_metric= opt. v5_metric) y. append( r + t) np. savetxt( f, y, fmt= '%10.4g' ) os. system( 'zip -r study.zip study_*.txt' ) plot_study_txt( x= x)
混淆矩阵代码:
class ConfusionMatrix : def __init__ ( self, nc, conf= 0.25 , iou_thres= 0.45 ) : self. matrix = np. zeros( ( nc + 1 , nc + 1 ) ) self. nc = nc self. conf = confself. iou_thres = iou_thresdef process_batch ( self, detections, labels) : """Return intersection-over-union (Jaccard index) of boxes.Both sets of boxes are expected to be in (x1, y1, x2, y2) format.Arguments:detections (Array[N, 6]), x1, y1, x2, y2, conf, classlabels (Array[M, 5]), class, x1, y1, x2, y2Returns:None, updates confusion matrix accordingly""" detections = detections[ detections[ : , 4 ] > self. conf] gt_classes = labels[ : , 0 ] . int ( ) detection_classes = detections[ : , 5 ] . int ( ) iou = general. box_iou( labels[ : , 1 : ] , detections[ : , : 4 ] ) x = torch. where( iou > self. iou_thres) if x[ 0 ] . shape[ 0 ] : matches = torch. cat( ( torch. stack( x, 1 ) , iou[ x[ 0 ] , x[ 1 ] ] [ : , None ] ) , 1 ) . cpu( ) . numpy( ) if x[ 0 ] . shape[ 0 ] > 1 : matches = matches[ matches[ : , 2 ] . argsort( ) [ : : - 1 ] ] matches = matches[ np. unique( matches[ : , 1 ] , return_index= True ) [ 1 ] ] matches = matches[ matches[ : , 2 ] . argsort( ) [ : : - 1 ] ] matches = matches[ np. unique( matches[ : , 0 ] , return_index= True ) [ 1 ] ] else : matches = np. zeros( ( 0 , 3 ) ) n = matches. shape[ 0 ] > 0 m0, m1, _ = matches. transpose( ) . astype( np. int16) for i, gc in enumerate ( gt_classes) : j = m0 == iif n and sum ( j) == 1 : self. matrix[ gc, detection_classes[ m1[ j] ] ] += 1 else : self. matrix[ self. nc, gc] += 1 if n: for i, dc in enumerate ( detection_classes) : if not any ( m1 == i) : self. matrix[ dc, self. nc] += 1 def matrix ( self) : return self. matrixdef plot ( self, save_dir= '' , names= ( ) ) : try : import seaborn as snprint ( "self.matrix:------------>" , self. matrix. shape) array = self. matrix / ( self. matrix. sum ( 0 ) . reshape( 1 , self. nc + 1 ) + 1E-6 ) array[ array < 0.005 ] = np. nan fig = plt. figure( figsize= ( 12 , 9 ) , tight_layout= True ) sn. set ( font_scale= 1.0 if self. nc < 50 else 0.8 ) labels = ( 0 < len ( names) < 99 ) and len ( names) == self. nc sn. heatmap( array, annot= self. nc < 30 , annot_kws= { "size" : 8 } , cmap= 'Blues' , fmt= '.2f' , square= True , xticklabels= names + [ 'background FP' ] if labels else "auto" , yticklabels= names + [ 'background FN' ] if labels else "auto" ) . set_facecolor( ( 1 , 1 , 1 ) ) fig. axes[ 0 ] . set_xlabel( 'True' ) fig. axes[ 0 ] . set_ylabel( 'Predicted' ) fig. savefig( Path( save_dir) / 'confusion_matrix.png' , dpi= 250 ) except Exception as e: pass def print ( self) : for i in range ( self. nc + 1 ) : print ( ' ' . join( map ( str , self. matrix[ i] ) ) )
数据集划分代码:
import xml. etree. ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os. path import join
import random
from shutil import copyfileclasses = [ "aeroplane" ,
"bicycle" ,
"bird" ,
"boat" ,
"bottle" ,
"bus" ,
"car" ,
"cat" ,
"chair" ,
"cow" ,
"diningtable" ,
"dog" ,
"horse" ,
"motorbike" ,
"person" ,
"pottedplant" ,
"sheep" ,
"sofa" ,
"train" ,
"tvmonitor" ] TRAIN_RATIO = 70 def clear_hidden_files ( path) : dir_list = os. listdir( path) for i in dir_list: abspath = os. path. join( os. path. abspath( path) , i) if os. path. isfile( abspath) : if i. startswith( "._" ) : os. remove( abspath) else : clear_hidden_files( abspath) def convert ( size, box) : dw = 1. / size[ 0 ] dh = 1. / size[ 1 ] x = ( box[ 0 ] + box[ 1 ] ) / 2.0 y = ( box[ 2 ] + box[ 3 ] ) / 2.0 w = box[ 1 ] - box[ 0 ] h = box[ 3 ] - box[ 2 ] x = x * dww = w * dwy = y * dhh = h * dhreturn ( x, y, w, h) def convert_annotation ( image_id) : in_file = open ( 'VOCdevkit/VOC2007/Annotations/%s.xml' % image_id) out_file = open ( 'VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w' ) tree = ET. parse( in_file) root = tree. getroot( ) size = root. find( 'size' ) w = int ( size. find( 'width' ) . text) h = int ( size. find( 'height' ) . text) for obj in root. iter ( 'object' ) : cls = obj. find( 'name' ) . textif cls not in classes: continue cls_id = classes. index( cls) xmlbox = obj. find( 'bndbox' ) b = ( float ( xmlbox. find( 'xmin' ) . text) , float ( xmlbox. find( 'xmax' ) . text) , float ( xmlbox. find( 'ymin' ) . text) , float ( xmlbox. find( 'ymax' ) . text) ) bb = convert( ( w, h) , b) out_file. write( str ( cls_id) + " " + " " . join( [ str ( a) for a in bb] ) + '\n' ) in_file. close( ) out_file. close( ) wd = os. getcwd( )
wd = os. getcwd( )
data_base_dir = os. path. join( wd, "VOCdevkit/" )
if not os. path. isdir( data_base_dir) : os. mkdir( data_base_dir)
work_sapce_dir = os. path. join( data_base_dir, "VOC2007/" )
if not os. path. isdir( work_sapce_dir) : os. mkdir( work_sapce_dir)
annotation_dir = os. path. join( work_sapce_dir, "Annotations/" )
if not os. path. isdir( annotation_dir) : os. mkdir( annotation_dir)
clear_hidden_files( annotation_dir)
image_dir = os. path. join( work_sapce_dir, "JPEGImages/" )
if not os. path. isdir( image_dir) : os. mkdir( image_dir)
clear_hidden_files( image_dir)
yolo_labels_dir = os. path. join( work_sapce_dir, "YOLOLabels/" )
if not os. path. isdir( yolo_labels_dir) : os. mkdir( yolo_labels_dir)
clear_hidden_files( yolo_labels_dir)
yolov5_images_dir = os. path. join( data_base_dir, "images/" )
if not os. path. isdir( yolov5_images_dir) : os. mkdir( yolov5_images_dir)
clear_hidden_files( yolov5_images_dir)
yolov5_labels_dir = os. path. join( data_base_dir, "labels/" )
if not os. path. isdir( yolov5_labels_dir) : os. mkdir( yolov5_labels_dir)
clear_hidden_files( yolov5_labels_dir)
yolov5_images_train_dir = os. path. join( yolov5_images_dir, "train/" )
if not os. path. isdir( yolov5_images_train_dir) : os. mkdir( yolov5_images_train_dir)
clear_hidden_files( yolov5_images_train_dir)
yolov5_images_test_dir = os. path. join( yolov5_images_dir, "val/" )
if not os. path. isdir( yolov5_images_test_dir) : os. mkdir( yolov5_images_test_dir)
clear_hidden_files( yolov5_images_test_dir)
yolov5_labels_train_dir = os. path. join( yolov5_labels_dir, "train/" )
if not os. path. isdir( yolov5_labels_train_dir) : os. mkdir( yolov5_labels_train_dir)
clear_hidden_files( yolov5_labels_train_dir)
yolov5_labels_test_dir = os. path. join( yolov5_labels_dir, "val/" )
if not os. path. isdir( yolov5_labels_test_dir) : os. mkdir( yolov5_labels_test_dir)
clear_hidden_files( yolov5_labels_test_dir) train_file = open ( os. path. join( wd, "yolov7_train.txt" ) , 'w' )
test_file = open ( os. path. join( wd, "yolov7_val.txt" ) , 'w' )
train_file. close( )
test_file. close( )
train_file = open ( os. path. join( wd, "yolov7_train.txt" ) , 'a' )
test_file = open ( os. path. join( wd, "yolov7_val.txt" ) , 'a' )
list_imgs = os. listdir( image_dir)
prob = random. randint( 1 , 100 )
print ( "Probability: %d" % prob)
for i in range ( 0 , len ( list_imgs) ) : path = os. path. join( image_dir, list_imgs[ i] ) if os. path. isfile( path) : image_path = image_dir + list_imgs[ i] voc_path = list_imgs[ i] ( nameWithoutExtention, extention) = os. path. splitext( os. path. basename( image_path) ) ( voc_nameWithoutExtention, voc_extention) = os. path. splitext( os. path. basename( voc_path) ) annotation_name = nameWithoutExtention + '.xml' annotation_path = os. path. join( annotation_dir, annotation_name) label_name = nameWithoutExtention + '.txt' label_path = os. path. join( yolo_labels_dir, label_name) prob = random. randint( 1 , 100 ) print ( "Probability: %d" % prob) if ( prob < TRAIN_RATIO) : if os. path. exists( annotation_path) : train_file. write( image_path + '\n' ) convert_annotation( nameWithoutExtention) copyfile( image_path, yolov5_images_train_dir + voc_path) copyfile( label_path, yolov5_labels_train_dir + label_name) else : if os. path. exists( annotation_path) : test_file. write( image_path + '\n' ) convert_annotation( nameWithoutExtention) copyfile( image_path, yolov5_images_test_dir + voc_path) copyfile( label_path, yolov5_labels_test_dir + label_name)
train_file. close( )
test_file. close( )