1.背景
为预防大量黑客故意发起非法的时间查询请求,造成缓存击穿,建议采用布隆过滤器的方法解决。布隆过滤器通过一个很长的二进制向量和一系列随机映射函数(哈希函数)来记录与识别某个数据是否在一个集合中。如果数据不在集合中,能被识别出来,不需要到数据库中进行查询,所以能将数据库查询返回值为空的查询过滤掉。
缓存穿透: 缓存穿透是查询一个根本不存在的数据,由于缓存是不命中时需要从数据库查询,这将导致这个不存在的数据每次请求都要到数据库去查询,进而给数据库带来压力。
2.布隆过滤器介绍
1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列的随机映射函数(哈希函数)两部分组成的数据结构。
用途: 用于检索一个元素是否在一个集合中。
优点:
时间复杂度低,增加及查询元素的时间复杂度都是O(k),k为Hash函数的个数;
占用存储空间小,布隆过滤器相对于其他数据结构(如Set、Map)非常节省空间。
缺点:
存在误判,只能证明一个元素一定不存在或者可能存在,返回结果是概率性的,但是可以通过调整参数来降低误判比例;
删除困难,一个元素映射到bit数组上的k个位置为1,删除的时候不能简单的直接置为0,可能会影响到其他元素的判断。
3.原理
当一个元素加入布隆过滤器中的时候,会进行如下操作:
使用布隆过滤器中的哈希函数对元素进行计算,得到哈希值(有几个哈希函数得到几个哈希值)。
根据得到的哈希值,在位数组中把对应下标的值置为1。
当我们需要判断一个元素是否位于布隆过滤器的时候,会进行如下操作:
对给定元素再次进行相同的哈希计算;
得到值之后判断位数组中的每个元素是否都为1,如果值都为1,那么说明这个值在布隆过滤器中,如果存在一个值不为1,说明该元素不在布隆过滤器中。
举个例子:
如图所示,当字符串存储要加入到布隆过滤器中时,该字符串首先由多个哈希函数生成不同的哈希值,然后将对应的位数组的下标设置为1(当位数组初始化时,所有位置均为 0)。当第二次存储相同字符串时,因为先前的对应位置已设置为 1,所以很容易知道此值已经存在(去重非常方便)。
如果我们需要判断某个字符串是否在布隆过滤器中时,只需要对给定字符串再次进行相同的哈希计算,得到值之后判断位数组中的某个元素是否都为1,如果值都为1,那么说明这个值在布隆过滤器中,如果存在一个值不为1,说明该元素不在布隆过滤器中。
不同的字符串可能哈希出来的位置相同,这种情况我们可以适当增加位数组大小或者调整我们的哈希函数。
综上:布隆过滤器说某个元素存在,小概率会误判。布隆过滤器说某个元素不存在,那么这个元素一定不在。
4.使用场景
4.1判断给定数据是否存在:
比如判断一个数字是否在于包含大量数字的数字集中(数字集很大,5亿以上)、防止缓存穿透(判断请求的数据是否有效避免直接绕过缓存请求数据库)、邮箱的垃圾邮件过滤、黑名单功能等。
4.2去重:
爬给定网址的时候对已经爬取过的URL去重。
5.代码实现
5.1Java实现
package com.fandf.test.redis;import java.util.BitSet;/*** java布隆过滤器*/
public class MyBloomFilter {/*** 位数组大小*/private static final int DEFAULT_SIZE = 2 << 24;/*** 通过这个数组创建多个Hash函数*/private static final int[] SEEDS = new int[]{4, 8, 16, 32, 64, 128, 256};/*** 初始化位数组,数组中的元素只能是 0 或者 1*/private final BitSet bits = new BitSet(DEFAULT_SIZE);/*** Hash函数数组*/private final MyHash[] myHashes = new MyHash[SEEDS.length];/*** 初始化多个包含 Hash 函数的类数组,每个类中的 Hash 函数都不一样*/public MyBloomFilter() {// 初始化多个不同的 Hash 函数for (int i = 0; i < SEEDS.length; i++) {myHashes[i] = new MyHash(DEFAULT_SIZE, SEEDS[i]);}}/*** 添加元素到位数组*/public void add(Object value) {for (MyHash myHash : myHashes) {bits.set(myHash.hash(value), true);}}/*** 判断指定元素是否存在于位数组*/public boolean contains(Object value) {boolean result = true;for (MyHash myHash : myHashes) {result = result && bits.get(myHash.hash(value));}return result;}/*** 自定义 Hash 函数*/private class MyHash {private int cap;private int seed;MyHash(int cap, int seed) {this.cap = cap;this.seed = seed;}/*** 计算 Hash 值*/int hash(Object obj) {return (obj == null) ? 0 : Math.abs(seed * (cap - 1) & (obj.hashCode() ^ (obj.hashCode() >>> 16)));}}public static void main(String[] args) {String str = "好好学技术";MyBloomFilter myBloomFilter = new MyBloomFilter();System.out.println("str是否存在:" + myBloomFilter.contains(str));myBloomFilter.add(str);System.out.println("str是否存在:" + myBloomFilter.contains(str));}
}
5.2Guava实现
依赖:
<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>31.1-jre</version>
</dependency>
代码:
package com.fandf.test.redis;import com.google.common.base.Charsets;
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;/*** Guava*/
public class GuavaBloomFilter {public static void main(String[] args) {BloomFilter<String> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8),100000,0.01);bloomFilter.put("好好学技术");System.out.println(bloomFilter.mightContain("不好好学技术"));System.out.println(bloomFilter.mightContain("好好学技术"));}
}
5.3hutool实现
依赖:
<dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.3</version>
</dependency>
代码:
package com.fandf.test.redis;import cn.hutool.bloomfilter.BitMapBloomFilter;
import cn.hutool.bloomfilter.BloomFilterUtil;/*** hutool*/
public class HutoolBloomFilter {public static void main(String[] args) {BitMapBloomFilter bloomFilter = BloomFilterUtil.createBitMap(1000);bloomFilter.add("好好学技术");System.out.println(bloomFilter.contains("不好好学技术"));System.out.println(bloomFilter.contains("好好学技术"));}
}
5.4Redisson实现
依赖:
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.20.0</version>
</dependency>
代码:
package com.fandf.test.redis;import org.redisson.Redisson;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;/*** Redisson 实现布隆过滤器*/
public class RedissonBloomFilter {public static void main(String[] args) {Config config = new Config();config.useSingleServer().setAddress("redis://127.0.0.1:6379");//构造RedissonRedissonClient redisson = Redisson.create(config);RBloomFilter<String> bloomFilter = redisson.getBloomFilter("name");//初始化布隆过滤器:预计元素为100000000L,误差率为1%bloomFilter.tryInit(100000000L,0.01);bloomFilter.add("好好学技术");System.out.println(bloomFilter.contains("不好好学技术"));System.out.println(bloomFilter.contains("好好学技术"));}
}