4D 毫米波雷达:智驾普及的新路径(二)

4 4D 毫米波的技术路线探讨

4.1 前端收发模块 MMIC:级联、CMOSAiP

4.1.1 设计:级联、单芯片、虚拟孔径

        4D 毫米波雷达的技术路线主要分为三种,分别是多级联、级联 + 虚拟孔径成像技术、以及 集成芯片。( 1 )多级联:级联方案以成熟的标准雷达芯片为基础,在业内得到广泛应用。级联方案通常应用德州仪器、英飞凌、恩智浦等公司的标准雷达芯片,通过 2 级联、 4 级联或 8 级联方式增加天线数量,形成多发多收通道。由于该方案基于成熟芯片打造,前期开发难度低,有利于加快产品上市节奏。目前,大陆集团、采埃孚、博世、安波福、华为、华域汽车等零部件供应商,均基于级联方案打造 4D 毫米波雷达。但由于级联方案由多颗芯片级联而成,产品尺寸较大、功耗较高。另一方面,天线之间存在互相干扰的问题,零部件供应商需要解决信噪比较低的问题。
        (2 )集成芯片:集成芯片方案集成度更高,对技术应用的要求提升。集成芯片方案通过将多发多收天线集成在一颗芯片中,以 ASIC 芯片实现上述功能。与级联方案相比,集成芯片方案集成度更高,有利于大幅缩小 4D 毫米波雷达的体积,降低产品功耗。但由于芯片方案尚未完全成熟,该方案成本较高。根据 Vehicle 数据,现阶段集成芯片方案的 4D 毫米波雷达单价约为 300-400 美元,级联方案则为 150-200 美元。同时,采用集成芯片方案的厂商需要解决天线密集布置、天线之间互相干扰等问题,对技术应用的要求更高。目前, Arbe、Uhnder Vayaar 为该技术路线的代表性企业。
        (3 )级联 + 虚拟孔径成像: 级联+虚拟孔径成像方案通过算法实现天线数量倍增。对于传统毫米波雷达而言,产生多种波形的唯一方法是增加接收天线数量。级联+虚拟孔径成像方案在标准雷达芯片的基础上,借助虚拟孔径成像算法进行相位调制,使得每根接收天线在不同时间产生不同的相位响应,从而将原有物理天线虚拟至十倍甚至数十倍,角分辨率能够从 10°提升至 1°。与级联方案相比,该方案使用的芯片数量更少,有利于缩小产品尺寸,降低产品功耗。与集成芯片方案相比,该方案使用的芯片更加成熟,且不依赖于特定厂商的芯片方案,兼容度更高。该方案在虚拟孔径成像算法、天线布局等方面具有较高壁垒,目前的主要参与者为傲酷和几何伙伴。
图表 16 : 前端收发模块 MMIC :级联、单芯片、虚拟孔径

        级联方案开发难度低、产品落地快,成为国外内为主流技术路线。TI 在公司早期推出的毫米波雷达芯片 AWR1243 中通过发射 FMCW 信号来探测目标的距离和速度,而使用时分波形的方式将三个发射和四个接收构成的 12个虚拟通道来探测角度,然而受限于角度分辨率,其获取的目标信息有效。而毫米波雷达系统级联方案,通过将四个三发四收的单个 MIMO芯片级联方案可以构成 12 16 收的 MIMO 雷达阵列,此时雷达系统的虚拟通道数可从 12提升到了 192,该方法可以极大地提升雷达系统的角度分辨率。目前大部分毫米波雷达公司,包括国内、国外、传统、头部的雷达供应商,都采用级联的方式实现,一般采用 2 片或者 4片级联的技术方案。级联的方式很多时候比单芯片方式更合适,效果和可行性更好。比如一个芯片的集成度非常高,单个芯片就要做得很大,因为单入单出非常占面积,成本也会很高。另外一个问题就是单芯片天线通道高频段耦合互耦非常强,这是一个很不好的设计。即使通过精心设计消除互耦,也存在同一芯片中通道拉的远的传输距离远导致损耗大的问题,但如果采用分布式或级联的解决方案,就能很好的解决这个问题。

4.1.2 MMIC 工艺:GaAs-SiGe-CMOS

        MMIC 芯片工艺改进( GaAs-SiGe-CMOS )推动车载毫米波雷达系统成本持续下行。
        1) GaAs 工艺时代( 1990 -2009 年): 早期 PCBA 上大部分的器件都可以使用硅来制造,只有射频部分没有办法使用,主流都是采用砷化镓(GaAs)的工艺来制造;由于砷化镓工艺所需要的材料比较稀缺,不管是材料成本和制造成本都比较高,对于生产线的要求也很高。因此在 2009 年之前,毫米波雷达中的前端射频芯片最初也是使用的 GaAs 工艺,而且集成度很低,一个毫米波雷达需要 7-8 MMICs 3-4 BBICs
        2) SiGe 工艺时代( 2009 年至今): SiGe(锗硅)拥有硅工艺的集成度、良率和成本优势,从 2009 年开始 SiGe 工艺逐渐代替 GaAs 工艺,毫米波雷达前端射频芯片的集成度大幅提升,一个毫米波雷达只需要 2-5 MMICs 1-2 BBICs,毫米波雷达整个系统成本降低 50%
        3) CMOS 工艺时代( 2017 年至今): 最初 CMOS 工艺没法用在毫米波雷达芯片,是因为不能工作在高频中,以 180nm 为例, SiGe 可以工作在 180GHz 以上,而 CMOS 工作频率只能达到 40GHz ;直到 2010 年工艺进步到 40nm ,才使得 CMOS 用于 77GHz 毫米波雷达成为可能。由于 CMOS 晶圆价格便宜且集成度非常高,一个毫米波雷达只需要 1 颗 MMIC芯片、 1 BBIC 芯片。
图表 17 : 前端收发模块 MMIC 工艺: GaAs-SiGe-CMOS

4.1.3 波形:FMCWPMCW

        目前车载毫米波雷达多采用连续调频式(FMCW )。顾名思义,调频连续波是连续发射调频信号,以测量距离、角度和速度等。在该方法中,在特定周期 T 内对特定频率的连续波进行调频,同时传输该连续波。以这种方式传输的信号可以被视为“带有时间戳”。发射波到达目标,其中一部分被反射。雷达接收到的反射波与原始信号混合、比较,进行信号处理。
        相对其他电磁波雷达,调频连续波雷达发射功率较低、成本低且信号处理相对简单,被毫米波雷达厂商广泛使用。

图表 19 FMCW 汽车雷达–原理和组件
        调相连续波(PMCW)雷达会根据码序列,由正交调制器对载波进行相位调制后发送,接收来自目标的反射信号,由正交检测器根据发送的载波信号进行正交检波,在 LPF 中消除谐波。用 ADC 将检波输出的实部( I )和虚部(Q)转换成数字信号,用数字滤波器进行频带限制后,用相关器计算发送码系列和接收码系列的相关值,通过峰值检测来检测目标。PMCW 毫米波雷达技术 , 相较于传统的 FMCW 雷达,具备探测距离更远、分辨率更高、抗干扰能力更强等优势。目前, Uhnder 有一款 28nm ,具有 12TX/16RX 通道收发器的产品,使用自己的软件来实现带数字编码调制( DCM )的相位调制连续波形( PMCW),有助于通过使用几乎独特的相位编码探测信号来消除相互的雷达干扰。
图表 20 PMCW 雷达的结构

4.2 天线:分立-AoB-AiP

        射频前端收发模块集成有分立模式、AoB AiP 三次技术路线。 AoB( 板载天线 )是指将天线贴在高频 PCB 板上; AiP( 封装天线 ) 是指将天线和芯片集成封装到一起,天线采用 IC 封装工艺制作。相比于 AoB AiP 具有以下优势:
        1) 带有天线封装的雷达传感器的板级面积比采用 AoB的传感器的天线所占板级空间的面积小约 30%
        2) 降低高频 PCB 基板面积,可以降低 BOM 成本。
        3) 由毫米波雷达芯片厂商做了天线设计部分,毫米波雷达系统厂商无需做天线设计和开发,可以降低工程成本。
        4) 由于从硅芯片到天线的路径更短,因此可以实现更高的效率和更低的功耗。
        小型化、增加新的应用场景、易安装、低成本是 AiP 技术的核心优势。考虑到未来车载 4D毫米波雷达的发展趋势,采用 AiP 技术将带来更小的雷达尺寸、更低的雷达成本、更灵活的应用场景。
图表 21 : 天线:分立模式 -AoB-AiP

4.3 系统:分立-模块合成-SoC 集成

        4D 毫米波雷达系统结构集成技术经历了分立模式、模组合成、 SoC 集成三次技术升级,我 们认为, SoC 集成是未来发展趋势。 MMIC DSP( 数字信号处理器 ) MCU( 微控制器 )是4D 毫米波雷达的核心部件,不同的系统结构集成技术代表了这三个部件不同的集成方式:
        1) 分立模式:指 MMIC,DSP MCU 模块都分开,可由不同的供应商提供产品
        2) 模组合成: MMIC DSP 集成,或者 DSP MCU 集成
        3) SoC 集成: SoC(SystemonaChip)是指将多个电子元件、模块或者子系统集成到一块芯片上的技术。这里指将 MMIC DSP MCU 集成在雷达 SoC 芯片上。
        低成本、小型化、高性能、低功耗是 SoC 集成最大优势,也符合车载 4D 毫米波雷达未来的发展趋势:
        1) 高集成带来的直接优势就是高性价比,因为可以用单 SoC 方案解决以前用三个子系统组成的毫米波雷达传感器,这显著降低了毫米波雷达的成本,大幅拉低了车载毫米波雷达硬件的开发难度。
        2) 将各个部件集中在一块芯片上,可以减小毫米波雷达体积。
        3) 各部件排布更为紧密,有效较少了各部件之间信息传输的损耗,提高了信息传输效率。
图表 22 : 系统:分立 - 模块合成 -SoC 集成

图表 23 4D 毫米波雷达系统

图表 24 : 德州仪器( TI AWR1642 毫米波雷达芯片的高级架构框图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/622434.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一张图总结架构设计的40个黄金法则

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中,很多小伙伴拿到非常优质的架构机会,常常找尼恩求助: 尼恩,我这边有一个部门技术负责人资深架构师的机会,非常难得, 但是有一个大厂高P在抢&#xff0…

第18课 移植FFmpeg和openCV到Android环境

要在Android下从事音视频开发,同样也绕不开ffmpegopencv,不管是初学者还是有一定经验的程序,面临的首要问题就是环境的搭建和库文件的编译配置等问题,特别是初学者,往往会在实际开发前浪费大量的时间来编译ffmpeg及ope…

【前后端的那些事】开源!前后端环境搭建+树形结构表格实现

文章目录 1. 前后端项目环境搭建2. table-tree2.1 后端准备2.2 前端准备 前言:最近写项目,发现了一些很有意思的功能,想写文章,录视频把这些内容记录下。但这些功能太零碎,如果为每个功能都单独搭建一个项目&#xff0…

py连接sqlserver数据库报错问题处理。20009

报错 pymssql模块连接sqlserver出现如下错误: pymssql._pymssql.OperationalError) (20009, bDB-Lib error message 20009, severity 9:\nUnable to connect: Adaptive Server is unavailable or does not exist (passwordlocalhost)\n) 解决办法: 打…

ES搜索的安装以及常用的增删改查操作(已经写好json文件,可以直接使用)

1.es的下载 https://www.elastic.co/cn/downloads/past-releases 2.elasticsearch安装及配置,遇到9200访问不了以及中文乱码,能访问了却要账户密码等问题 Elasticsearch启动后访问9200失败_http://localhost:9200无返回值-CSDN博客 3.开启es服务&#x…

ZZULIOJ 1112: 进制转换(函数专题)

题目描述 输入一个十进制整数n,输出对应的二进制整数。常用的转换方法为“除2取余,倒序排列”。将一个十进制数除以2,得到余数和商,将得到的商再除以2,依次类推,直到商等于0为止,倒取除得的余数…

C语言中关于指针的理解及用法

关于指针意思的参考:https://baike.baidu.com/item/%e6%8c%87%e9%92%88/2878304 指针 指针变量 地址 野指针 野指针就是指针指向的位置是不可知的(随机的,不正确的,没有明确限制的) 以下是导致野指针的原因 1.指针…

mysql原理--redo日志1

1.redo日志是个啥 我们知道 InnoDB 存储引擎是以页为单位来管理存储空间的,我们进行的增删改查操作其实本质上都是在访问页面(包括读页面、写页面、创建新页面等操作)。我们前边唠叨 Buffer Pool 的时候说过,在真正访问页面之前&a…

Hyperledger Fabric 通道配置文件解析

fabric 版本 v2.4.1 Fabric 网络是分布式系统,采用通道配置(Channel Configuration)来定义共享账本的各项行为。通道配置的管理对于网络功能至关重要。 通道配置一般包括通道全局配置、排序配置和应用配置等多个层级,这些配置都存…

好物周刊#36:程序员简历

村雨遥的好物周刊,记录每周看到的有价值的信息,主要针对计算机领域,每周五发布。 一、项目 1. SmartDNS 一个运行在本地的 DNS 服务器,它接受来自本地客户端的 DNS 查询请求,然后从多个上游 DNS 服务器获取 DNS 查询…

JavaScript学习笔记——变量、作用域、var、const和let

JavaScript学习笔记——变量、作用域、var、const和let 学习链接(原链接)变量变量声明的三种方式 作用域作用域介绍作用域分类全局作用域局部作用域(函数作用域)块级作用域块级作用域和局部(函数)作用域区别 varvar的作用域(全局函…

单表的查询练习

一、单表查询 素材: 表名:worker-- 表中字段均为中文,比如 部门号 工资 职工号 参加工作 等 显示所有职工的基本信息。 mysql8.0 [chap03]>select * from worker; 查询所有职工所属部门的部门号,不显示重复的部门号。 mysq…

SOLID 原则

单一功能原则 单一功能原则(Single responsibility principle)规定每个类都应该有一个单一的功能,并且该功能应该由这个类完全封装起来。所有它的(这个类的)服务都应该严密的和该功能平行(功能平行&#x…

AnyDoor任意门:零样本物体级图像定制化

文章目录 一、AnyDoor简介二、AnyDoor方法(一)ID特征提取(二)细节特征提取(三)特征注入(四)视频、图像动态采样 一、AnyDoor简介 “任意门”算法:可以将任意目标传送到指…

Java SPI机制总结系列之开发入门实例

原创/朱季谦 在该文章正式开始前,先对 Java SPI是什么做一个简单的介绍。 SPI,是Service Provider Interface的缩写,即服务提供者接口,单从字面上看比较抽象,你可以理解成,该机制就像Spring容器一样&…

Python之Matplotlib绘图调节清晰度

Python之Matplotlib绘图调节清晰度 文章目录 Python之Matplotlib绘图调节清晰度引言解决方案dpi是什么?效果展示总结 引言 使用python中的matplotlib.pyplot绘图的时候,如果将图片显示出来,或者另存为图片,常常会出现清晰度不够的…

【JAVA】在 Queue 中 poll()和 remove()有什么区别

🍎个人博客:个人主页 🏆个人专栏:JAVA ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 poll() 方法: remove() 方法: 区别总结: 结语 我的其他博客 前言 在Java的Queue接口中&…

强化学习应用(六):基于Q-learning的物流配送路径规划研究(提供Python代码)

一、Q-learning算法简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是使用一个Q值函数来估计每…

day-09 删除排序链表中的重复元素

思路 从前往后遍历链表,当当前节点的值与下一个节点值相等时,删除下一节点;否则向后移动一个节点,继续遍历 解题方法 while(p!null&&p.next!null){ if(p.next.valp.val)p.nextp.next.next;//当前节点的值与下一个节点值相…

鸿蒙Harmony-层叠布局(Stack)详解

我们总是为了太多遥不可及的东西去拼命,却忘了人生真正的幸福不过是灯火阑珊处的温暖,柴米油盐的充实,人生无论你赚的钱,是多还是少,经历的事情是好还是坏,都不如过好当下的每一天! 目录 一&am…