Hudi Spark使用
本篇为大家带来通过Spark shell和Spark SQL操作Hudi表的方式。
Hudi表还可以通过Spark ThriftServer操作。
软件准备
- Scala 2.12
- Flink 1.15
- Spark 3.3
- Hudi 0.13.1
Hudi编译的时候会遇到依赖下载缓慢的情况。需要换用国内源。修改settings.xml文件,在mirrors部分增加:
settings.xml
<mirror><id>alimaven</id><mirrorOf>*,!confluent</mirrorOf><name>aliyun maven</name><url>https://maven.aliyun.com/repository/public</url>
</mirror>
然后在Hudi项目checkout0.13.1版本,接着根目录执行:
mvn clean package -Dflink1.15 -Dscala2.12 -Dspark3.3 -DskipTests -Pflink-bundle-shade-hive3 -T 4
编译输出的Spark Hudi依赖位于hudi/packaging/hudi-spark-bundle/target,将其中的hudi-spark3.x-bundle_2.12-0.xx.x.jar复制走备用。
环境配置
需要禁用Yarn组件的yarn.timeline-service.enabled配置。修改完毕后重启Yarn组件。
或者是在spark-defaults.conf中增加spark.hadoop.yarn.timeline-service.enabled=false。建议这样配置,避免修改Yarn的全局配置。
接着将Hudi编译之后的hudi-spark3.x-bundle_2.12-0.xx.x.jar复制到${SPARK_HOME}/jars目录中。
Spark Shell方式
启动Hudi spark shell的方法:
./spark-shell \--master yarn \--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \--conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog' \--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'
如果使用Hudi的版本为0.11.x,需要执行:
./spark-shell \--master yarn \--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
执行作业前建议导入如下:
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
插入数据
import org.apache.spark.sql._
import org.apache.spark.sql.types._
val fields = Array(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("price", DoubleType, true),StructField("ts", LongType, true))
val simpleSchema = StructType(fields)
val data = Seq(Row(2, "a2", 200.0, 100L))
val df = spark.createDataFrame(data, simpleSchema)
df.write.format("hudi").option(PRECOMBINE_FIELD_OPT_KEY, "ts").option(RECORDKEY_FIELD_OPT_KEY, "id").option(TABLE_NAME, "hudi_mor_tbl_shell").option(TABLE_TYPE_OPT_KEY, "MERGE_ON_READ").mode(Append).save("hdfs:///hudi/hudi_mor_tbl_shell")
验证:
val df = spark.read.format("hudi").load("hdfs:///hudi/hudi_mor_tbl_shell")
df.createOrReplaceTempView("hudi_mor_tbl_shell")spark.sql("select * from hudi_mor_tbl_shell").show()
普通查询
val df = spark.read.format("hudi").load("hdfs:///hudi/hudi_mor_tbl_shell")
df.createOrReplaceTempView("hudi_mor_tbl_shell")spark.sql("select * from hudi_mor_tbl_shell").show()
增量查询
首先再插入/修改一条数据,参见插入/修改数据。然后执行:
spark.read.format("hudi").load("hdfs:///hudi/hudi_mor_tbl_shell").createOrReplaceTempView("hudi_mor_tbl_shell")val commits = spark.sql("select distinct(_hoodie_commit_time) as commitTime from hudi_mor_tbl_shell order by commitTime desc").map(k => k.getString(0)).take(50)
val beginTime = commits(commits.length - 1)val idf = spark.read.format("hudi").option(QUERY_TYPE_OPT_KEY, QUERY_TYPE_INCREMENTAL_OPT_VAL).option(BEGIN_INSTANTTIME_OPT_KEY, beginTime).load("hdfs:///hudi/hudi_mor_tbl_shell")
idf.createOrReplaceTempView("hudi_mor_tbl_shell_incremental")spark.sql("select `_hoodie_commit_time`, id, name, price, ts from hudi_mor_tbl_shell_incremental").show()
发现只取出了最近插入/修改后的数据。
修改数据
import org.apache.spark.sql._
import org.apache.spark.sql.types._
val fields = Array(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("price", DoubleType, true),StructField("ts", LongType, true))
val simpleSchema = StructType(fields)
val data = Seq(Row(2, "a2", 400.0, 2222L))
val df = spark.createDataFrame(data, simpleSchema)df.write.format("hudi").option(PRECOMBINE_FIELD_OPT_KEY, "ts").option(RECORDKEY_FIELD_OPT_KEY, "id").option(TABLE_NAME, "hudi_mor_tbl_shell").option(TABLE_TYPE_OPT_KEY, "MERGE_ON_READ").mode(Append).save("hdfs:///hudi/hudi_mor_tbl_shell")
验证方法使用普通查询。
Insert overwrite
import org.apache.spark.sql._
import org.apache.spark.sql.types._
val fields = Array(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("price", DoubleType, true),StructField("ts", LongType, true))
val simpleSchema = StructType(fields)
val data = Seq(Row(99, "a99", 20.0, 900L))
val df = spark.createDataFrame(data, simpleSchema)df.write.format("hudi").option(OPERATION.key(),"insert_overwrite").option(PRECOMBINE_FIELD.key(), "ts").option(RECORDKEY_FIELD.key(), "id").option(TBL_NAME.key(), "hudi_mor_tbl_shell").option(TABLE_TYPE_OPT_KEY, "MERGE_ON_READ").mode(Append).save("hdfs:///hudi/hudi_mor_tbl_shell")
验证方法使用普通查询。发现只有新增的这一条数据。
删除数据
import org.apache.spark.sql._
import org.apache.spark.sql.types._
val fields = Array(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("price", DoubleType, true),StructField("ts", LongType, true))
val simpleSchema = StructType(fields)
val data = Seq(Row(2, "a2", 400.0, 2222L))
val df = spark.createDataFrame(data, simpleSchema)df.write.format("hudi").option(OPERATION_OPT_KEY,"delete").option(PRECOMBINE_FIELD_OPT_KEY, "ts").option(RECORDKEY_FIELD_OPT_KEY, "id").option(TABLE_NAME, "hudi_mor_tbl_shell").mode(Append).save("hdfs:///hudi/hudi_mor_tbl_shell")
验证方法使用普通查询。
Spark SQL方式
启动Hudi spark sql的方法:
./spark-sql \--master yarn \--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension' \--conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog'
如果使用Hudi的版本为0.11.x,需要执行:
./spark-sql \--master yarn \--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'
创建表:
create table hudi_mor_tbl (id int,name string,price double,ts bigint
) using hudi
tblproperties (type = 'mor',primaryKey = 'id',preCombineField = 'ts'
)
location 'hdfs:///hudi/hudi_mor_tbl';
验证:
show tables;
插入数据
SQL方式:
insert into hudi_mor_tbl select 1, 'a1', 20, 1000;
验证:
select * from hudi_mor_tbl;
普通查询
SQL方式:
select * from hudi_mor_tbl;
修改数据
SQL方式:
update hudi_mor_tbl set price = price * 2, ts = 1111 where id = 1;
验证:
select * from hudi_mor_tbl;
insert overwrite
SQL方式:
insert overwrite hudi_mor_tbl select 99, 'a99', 20.0, 900;
验证:
select * from hudi_mor_tbl;
发现只有新增的这一条数据。
删除数据
SQL方式:
delete from hudi_mor_tbl where id % 2 = 1;
验证:
select * from hudi_mor_tbl;
Kerberos和权限配置
例如,如果要允许Hudi用户对Hudi表进行操作,提交队列为default,表路径为hdfs:///hudi/t1,可以通过以下步骤使用Ranger进行设置:
1、在Ranger中创建一个名为hudi的用户。
2、分配给hudi用户以下目录的读写权限:/hdfs/hudi/t1,/tmp,/user/hudi。
3、赋予hudi用户对yarn default队列的权限。
如果启用了Kerberos,还需要执行以下额外步骤:
1、在Kerberos中创建hudi@PAULTECH.COM主体,并生成相应的keytab文件。
2、在执行kinit之后,确保hudi用户具有相应的权限以执行相关操作。
通过这些设置,Hudi用户应该能够在指定的表路径下执行操作,并具有必要的HDFS和YARN权限,确保了对应用程序的顺利运行。
FAQ
1、spark-sql或者spark-shell启动出现NoClassDefFoundError: org/apache/hadoop/shaded/javax/ws/rs/core/NoContentException
问题日志:
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/shaded/javax/ws/rs/core/NoContentExceptionat org.apache.hadoop.yarn.util.timeline.TimelineUtils.<clinit>(TimelineUtils.java:60)at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.serviceInit(YarnClientImpl.java:200)at org.apache.hadoop.service.AbstractService.init(AbstractService.java:164)at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:191)at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:222)at org.apache.spark.SparkContext.<init>(SparkContext.scala:585)at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2704)at org.apache.spark.sql.SparkSession$Builder.$anonfun$getOrCreate$2(SparkSession.scala:953)at scala.Option.getOrElse(Option.scala:189)at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:947)at org.apache.spark.sql.hive.thriftserver.SparkSQLEnv$.init(SparkSQLEnv.scala:54)at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.<init>(SparkSQLCLIDriver.scala:327)at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:159)at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(Method.java:498)at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:958)at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:180)at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:203)at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:90)at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1046)at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1055)at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.shaded.javax.ws.rs.core.NoContentExceptionat java.net.URLClassLoader.findClass(URLClassLoader.java:381)at java.lang.ClassLoader.loadClass(ClassLoader.java:424)at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)at java.lang.ClassLoader.loadClass(ClassLoader.java:357)... 27 more
问题原因:Hadoop和Spark版本不匹配所致。
解决方案:可禁用Yarn的timeline-service。禁用方法请看环境配置。
参考链接:
https://github.com/apache/kyuubi/issues/2904
2、创建表的时候出现 CreateHoodieTableCommand: Failed to create catalog table in metastore: org.apache.hudi.hadoop.realtime.HoodieParquetRealtimeInputFormat
从原始报错看不出来是什么问题,需要增加代码:
hudi-spark-datasource/hudi-spark-common/src/main/scala/org/apache/spark/sql/hudi/command/CreateHoodieTableCommand.scala
85行左右修改为:
case NonFatal(e) => {logWarning(s"Failed to create catalog table in metastore: ${e.getMessage}")logWarning(s"Failed to create catalog table in metastore: ${e.getClass}")logWarning(s"Failed to create catalog table in metastore: ${e.getStackTrace.mkString("Array(", ", ", ")")}")}
编译替换后再次运行。可看到更为详细的报错日志:
org.apache.hudi.hadoop.realtime.HoodieParquetRealtimeInputFormat。经过查找,发现这个class在hudi-hadoop-mr-bundle包中。
将Hudi编译后的hudi-hadoop-mr-bundle-0.13.1.jar放入到hive安装目录的lib或者auxlib中。重启Hive metastore服务后恢复正常。
3、spark-sql或者spark-shell命令太长,每次都要加入Hudi必须的conf配置,可否简化
有办法简化,可以将Hudi的配置加入到spark-defaults.conf配置文件中。例如对于Hudi 0.13.1版本可在spark-defaults.conf中加入:
spark.serializer=org.apache.spark.serializer.KryoSerializer
spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog
spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension
修改之后在启动spark-shell只需要执行:
./spark-shell --master yarn
对于spark-sql,执行:
./spark-sql --master yarn
更多文章请扫码关注公众号,有问题的小伙伴也可以在公众号上提出。