回归预测 | Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)

回归预测 | Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)

目录

    • 回归预测 | Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)
      • 预测效果
      • 基本描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制);
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE多指标评价;
5.麻雀算法优化学习率,隐藏层节点,正则化系数;### 模型描述
注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          
tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc")                                      % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); %% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/619642.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络NCEPU复习资料

目录 一.概述: 计算机网络组成: 计算机网络分类: 计算机网络体系结构: C/S架构与P2P架构区别: OSI开放式系统互连参考模型: OSI开放式系统互连参考模型 相关协议: 五层协议网…

Vue.js设计与实现阅读-3

Vue设计与实现阅读-3 1、声明式描述UI2、渲染器3、组件4、模板的工作原理5、Vue.js 是各个模块组成的有机整体 前言 前面一章我们了解了,开发体验是衡量一个框架的重要指标之一。提供友好的警告信息至关重要,但是越详细的警告信息,意味着框架…

5 微信小程序

功能开发 5 功能开发概要今日详细1.发布1.1 发布流程的问题1.2 组件:进度条1.3 修改data中的局部数据1.4 发布示例效果前端后端 1.5 闭包 2.获取前10条新闻(动态/心情,无需分页)3.复杂版4.文章详细页面 各位小伙伴想要博客相关资料…

【python入门】day26: 模拟高铁售票系统

界面 代码 #-*- coding:utf-8 -*- import prettytable as pt#---------导入漂亮表格 import os.path filename ticket.txt#更新座位状态 def update(row_num):#------更新购票状态with open(filename,w,encodingutf-8) as wfile:for i in range(row_num):lst1 [f{i1},有票,有…

Modbus协议学习第一篇之基础概念

什么是“协议” 大白话解释:协议是用来正确传递消息数据而设立的一种规则。传递消息的双方(两台计算机)在通信时遵循同一种协议,即可理解彼此传递的消息数据。 Modbus协议模型 Modbus协议模型较为简单,使用一种称为应用…

soc算法【周末总结】

1 实验一(SOC误差30%放电实验) 1.1 实验过程 1、对电池包进行充电,将昨天放空的电池包进行充电,充电至SOC40%左右; 2、电池包SOC为38%时,手动修改SOC值为70%,开始放电 3、SOC由70%缓慢降至4…

Windows下面基于pgsql15的备份和恢复

一、基础备份 1.创建一个文件用来存储备份数据 2.备份指令 $CurrentDate Get-Date -Format "yyyy-MM-dd" $OutputDirectory "D:\PgsqData\pg_base\$CurrentDate" $Command "./pg_basebackup -h 127.0.0.1 -U postgres -Ft -Pv -Xf -z -Z5 -D $O…

教育观察期刊投稿邮箱、投稿要求

《教育观察》创刊于2012年,是国家新闻出版总署批准的正规教育类学术期刊,本刊致力于在教育实践中以“观察”为方法,以“观察者”为主体,以“新观察”为旨趣,打造从教育实践中洞察教育未来的教育研究与交流的平台。主要…

关于Quartz远程调用服务方法失败如何解决,@Inner详细介绍

1.单独在要调用服务的controller写上相关方法(Inner(value true)要走aop,会检测是否有内部调用标识)具体见下述 2. 编写Feign远程调用的接口,注意加上RequestHeader(SecurityConstants.FROM) String from。因为inner(value true…

【LabVIEW FPGA入门】LabVIEW FPGA实现I2S解码器

该示例演示了如何使用 LabVIEW FPGA 解码 IS 信号。该代码可用于大多数支持高速数字输入的LabVIEW FPGA 目标(例如R 系列、CompactRIO)。IS 用于对系统和组件内的数字音频数据进行编码。例如,MP3 播放器或 DVD 播放器内部的数字音频通常使用 …

【从零开始学习Java重要集合】深入解读ThreadLocal类

目录 前言: ThreadLocal: ThreadLocal的内部结构: ThreadLocal的常用方法: 1.set方法: 2.get方法: 3.setInitialValue方法 remove方法(): ThreadLocalMap&…

MySQL数据库入门到大牛_高级_00_MySQL高级特性篇的内容简介

文章目录 一、整个MySQL的思维导图二、MySQL高级特性篇大纲1. MySQL架构篇2. 索引及调优篇3. 事务篇4. 日志与备份篇 一、整个MySQL的思维导图 下图为整个MySQL内容,01-05是基础篇,06-09是高级篇 二、MySQL高级特性篇大纲 MySQL高级特性分为4个篇章&…

mybatisplus配置

一、新建项目&#xff1a;com.saas.plusdemo 二、配置pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:sch…

双向冒泡排序的数据结构实验报告

目录 实验目的&#xff1a; 实验内容&#xff08;实验题目与说明&#xff09; 算法设计&#xff08;核心代码或全部代码&#xff09; 运行与测试&#xff08;测试数据和实验结果分析&#xff09; 总结与心得&#xff1a; 实验目的&#xff1a; 理解双向冒泡排序算法的原…

2023年全国职业院校技能大赛软件测试赛题—单元测试卷⑧

单元测试 一、任务要求 题目1&#xff1a;根据下列流程图编写程序实现相应处理&#xff0c;执行j10*x-y返回文字“j1&#xff1a;”和计算值&#xff0c;执行j(x-y)*(10⁵%7)返回文字“j2&#xff1a;”和计算值&#xff0c;执行jy*log(x10)返回文字“j3&#xff1a;”和计算值…

山西电力市场日前价格预测【2024-01-13】

日前价格预测 预测说明&#xff1a; 如上图所示&#xff0c;预测明日&#xff08;2024-01-13&#xff09;山西电力市场全天平均日前电价为231.81元/MWh。其中&#xff0c;最高日前电价为345.71元/MWh&#xff0c;预计出现在00:15。最低日前电价为0.00元/MWh&#xff0c;预计出…

node-sass@4.7.2 postinstall: `node scripts/build.js`

Can‘t find Python executable “D:\Python36\python.EXE“, you can set the PYTHON env variable.-CSDN博客 gyp ERR! build error gyp ERR! stack Error: C:\Windows\Microsoft.NET\Framework\v4.0.30319\msbuild.exe failed with exit code: 1 gyp ERR! stack at Chil…

uniapp怎么开发插件并发布

今天耳机坏了,暂时内卷不了,所以想开发几个插件玩玩,也好久没写博客了,就拿这个来写了 首先,发布插件时需要你有项目 这里先拿uniapp创建一个项目, 如下,创建好的项目长这样 然后根据uniapp官网上说的,我们发布插件时,需要在uni_modules里面编写和发布 ps:还需要使用uniapp…

Mysql事务的处理

1、事务&#xff0c;就是一组命令的操作。 不过这一组命令&#xff0c;我们有时候需要使用手动提交&#xff1b; 1、使用这组命令可以查询出来现在的提交方式&#xff1a;自动提交&#xff08;就是命令输入&#xff0c;点击enter后&#xff0c;会不会直接对表格产生修改&#x…

一篇文章让你搞懂性能测试6大类型及其关系!

性能测试是软件测试过程的一个关键环节&#xff0c;用于确定和验证应用程序或系统在各种操作条件下的性能特征。 目标是确保软件在高负载、高压力、长时间运行以及其他非标准情况下仍能保持预期的行为和效率。 一. 性能测试的主要类型 1. 基线测试&#xff08;Baseline Test…