【Deviation】50 Matplotlib Visualizations, Python实现,源码可复现

详情请参考博客: Top 50 matplotlib Visualizations
因编译更新问题,本文将稍作更改,以便能够顺利运行。

本文介绍一下5中图示:
Diverging Bars
Diverging Texts
Diverging Dot Plot
Diverging Lollipop Chart with Markers
Area Chart

1 Diverging Bars 发散柱图

如果您想查看项目如何基于单个指标而变化,并可视化此差异的顺序和数量,则发散条是一个很好的工具。它有助于快速区分数据中组的性能,并且非常直观,可以立即传达要点。

新建文件Diverging Bars.py:

# Import Setup
from Setup import pd
from Setup import plt# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']]
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)# Draw plot
plt.figure(figsize=(14,10), dpi= 80)
plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=5)# Decorations
plt.gca().set(ylabel='$Model$', xlabel='$Mileage$')
plt.yticks(df.index, df.cars, fontsize=12)
plt.title('Diverging Bars of Car Mileage', fontdict={'size':20})
plt.grid(linestyle='--', alpha=0.5)
plt.show()

运行结果为:

在这里插入图片描述

2 Diverging Texts

发散文本类似于发散条形,如果您想以美观且美观的方式显示图表中每个项目的值,则首选文本。

新建文件Diverging Texts.py:

# Import Setup
from Setup import pd
from Setup import plt# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']]
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)# Draw plot
plt.figure(figsize=(14,14), dpi= 80)
plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z)
for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):t = plt.text(x, y, round(tex, 2), horizontalalignment='right' if x < 0 else 'left', verticalalignment='center', fontdict={'color':'red' if x < 0 else 'green', 'size':14})# Decorations    
plt.yticks(df.index, df.cars, fontsize=12)
plt.title('Diverging Text Bars of Car Mileage', fontdict={'size':20})
plt.grid(linestyle='--', alpha=0.5)
plt.xlim(-2.5, 2.5)
plt.show()

运行结果为:

在这里插入图片描述

3 Diverging Dot Plot

分流点图也类似于发散条。然而,与发散条相比,没有条形减少了组之间的对比度和差异量。

新建文件Diverging Dot Plot.py:

# Import Setup
from Setup import pd
from Setup import plt# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = ['red' if x < 0 else 'darkgreen' for x in df['mpg_z']]
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)# Draw plot
plt.figure(figsize=(14,16), dpi= 80)
plt.scatter(df.mpg_z, df.index, s=450, alpha=.6, color=df.colors)
for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):t = plt.text(x, y, round(tex, 1), horizontalalignment='center', verticalalignment='center', fontdict={'color':'white'})# Decorations
# Lighten borders
plt.gca().spines["top"].set_alpha(.3)
plt.gca().spines["bottom"].set_alpha(.3)
plt.gca().spines["right"].set_alpha(.3)
plt.gca().spines["left"].set_alpha(.3)plt.yticks(df.index, df.cars)
plt.title('Diverging Dotplot of Car Mileage', fontdict={'size':20})
plt.xlabel('$Mileage$')
plt.grid(linestyle='--', alpha=0.5)
plt.xlim(-2.5, 2.5)
plt.show()

运行结果为:

在这里插入图片描述

4 Diverging Lollipop Chart with Markers

带标记的图示提供了一种灵活的方法来可视化背离,方法是强调您想要引起注意的任何重要数据点并在图表中适当地进行推理。

新建文件Diverging Lollipop Chart with Markers.py:

# Import Setup
from Setup import pd
from Setup import plt# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = 'black'# color fiat differently
df.loc[df.cars == 'Fiat X1-9', 'colors'] = 'darkorange'
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)# Draw plot
import matplotlib.patches as patchesplt.figure(figsize=(14,16), dpi= 80)
plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=1)
plt.scatter(df.mpg_z, df.index, color=df.colors, s=[600 if x == 'Fiat X1-9' else 300 for x in df.cars], alpha=0.6)
plt.yticks(df.index, df.cars)
plt.xticks(fontsize=12)# Annotate
plt.annotate('Mercedes Models', xy=(0.0, 11.0), xytext=(1.0, 11), xycoords='data', fontsize=15, ha='center', va='center',bbox=dict(boxstyle='square', fc='firebrick'),arrowprops=dict(arrowstyle='-[, widthB=2.0, lengthB=1.5', lw=2.0, color='steelblue'), color='white')# Add Patches
p1 = patches.Rectangle((-2.0, -1), width=.3, height=3, alpha=.2, facecolor='red')
p2 = patches.Rectangle((1.5, 27), width=.8, height=5, alpha=.2, facecolor='green')
plt.gca().add_patch(p1)
plt.gca().add_patch(p2)# Decorate
plt.title('Diverging Bars of Car Mileage', fontdict={'size':20})
plt.grid(linestyle='--', alpha=0.5)
plt.show()

运行结果为:

在这里插入图片描述

5 Area Chart

通过对轴和线之间的区域进行着色,面积图不仅更加强调波峰和波谷,还更加强调高点和低点的持续时间。高点持续时间越长,线下面积越大。

新建文件Area Chart.py:

# Import Setup
from Setup import pd
from Setup import pltimport numpy as np
import pandas as pd# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/economics.csv", parse_dates=['date']).head(100)
x = np.arange(df.shape[0])
y_returns = (df.psavert.diff().fillna(0)/df.psavert.shift(1)).fillna(0) * 100# Plot
plt.figure(figsize=(16,10), dpi= 80)
plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] >= 0, facecolor='green', interpolate=True, alpha=0.7)
plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] <= 0, facecolor='red', interpolate=True, alpha=0.7)# Annotate
plt.annotate('Peak \n1975', xy=(94.0, 21.0), xytext=(88.0, 28),bbox=dict(boxstyle='square', fc='firebrick'),arrowprops=dict(facecolor='steelblue', shrink=0.05), fontsize=15, color='white')# Decorations
xtickvals = [str(m)[:3].upper()+"-"+str(y) for y,m in zip(df.date.dt.year, df.date.dt.month_name())]
plt.gca().set_xticks(x[::6])
plt.gca().set_xticklabels(xtickvals[::6], rotation=90, fontdict={'horizontalalignment': 'center', 'verticalalignment': 'center_baseline'})
plt.ylim(-35,35)
plt.xlim(1,100)
plt.title("Month Economics Return %", fontsize=22)
plt.ylabel('Monthly returns %')
plt.grid(alpha=0.5)
plt.show()

运行结果为:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/6190.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】通过栈和队列学会使用适配器和优先队列学会仿函数的使用

&#x1f307;个人主页&#xff1a;平凡的小苏 &#x1f4da;学习格言&#xff1a;命运给你一个低的起点&#xff0c;是想看你精彩的翻盘&#xff0c;而不是让你自甘堕落&#xff0c;脚下的路虽然难走&#xff0c;但我还能走&#xff0c;比起向阳而生&#xff0c;我更想尝试逆风…

pytorch安装GPU版本 (Cuda12.1)教程: Windows、Mac和Linux系统下GPU版PyTorch(CUDA 12.1)快速安装

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…

vscode设置java -Xmx最大堆内存

如果在vscode中直接运行java程序&#xff0c;想要改下每次运行的最大堆内存&#xff0c;按照如下修改 一、vscode安装java插件 当然前提是vscode在应用管理中已经安装了java语言的插件&#xff0c;Debugger for Java,如下图所示 二、CommandShiftP打开配置搜索框 三、搜索…

dpdpdp

这里写目录标题 139. 单词拆分322. 零钱兑换300. 最长递增子序列120. 三角形最小路径和64. 最小路径和63. 不同路径 II5. 最长回文子串&#xff08;回文dp&#xff09;⭐97. 交错字符串⭐&#xff08;抽象成路径问题&#xff09;221. 最大正方形⭐ 139. 单词拆分 class Soluti…

代码随想录day8 | KMP 28.实现strStr() 459.重复的子字符串

文章目录 一、实现strStr()二、重复的子字符串 一、实现strStr() 先学学KMP算法&#xff0c;代码随想录 28.实现strStr() class Solution { public:void getNext(int* next, const string& s) {int j -1;next[0] j;for(int i 1; i < s.size(); i) { // 注意i从1开始…

微信小程序的微信一键登录与验证码登录

验证码登录 <template><view class"wx-login"><view class"login-Box"><text class"title">欢迎登录</text><text class"subTitle">再就业男团系统</text><view class"login-Form…

【算法基础:搜索与图论】3.3 拓扑排序

文章目录 拓扑排序介绍如何构造拓扑排序&#xff08;⭐重要&#xff01;&#xff09; 例题&#xff1a;848. 有向图的拓扑序列BFS 写法构造拓扑排序 相关题目练习207. 课程表&#xff08;判断是否存在拓扑序列&#xff09;bfs 写法dfs 写法 210. 课程表 II&#xff08;找到一个…

算法竞赛入门【码蹄集新手村600题】(MT1020-1040)

算法竞赛入门【码蹄集新手村600题】(MT1020-1040&#xff09; 目录MT1021 %f格式符MT1022 小数、指数MT1023 进制乱炖MT1024 进制形式MT1025 八、十六进制MT1026 合并MT1027 整数逆序MT1028 四位数逆序MT1029 位数MT1030 最大公约数MT1031 最简分数MT1032 最小公倍数MT1033 多项…

Docker 续

Docker 续 一、Docker 网络1.1 Docker 网络实现原理1.2 Docker 的网络模式1.2.1 Docker 网络模式分类 1.3 如何创建各类网络模式1.4 host模式1.5 container模式1.6 none模式1.7 bridge模式1.8 自定义网络 二、资源控制2.1 Cgroup2.2 CPU 资源控制2.2.1 设置CPU使用率上限2.2.2 …

c# Outlook检索设定问题

基于c# 设定outlook约会予定&#xff0c;时间格式是YYYY-MM-DD HH:mm 的情报。 问题发生&#xff1a; 根据开始时间&#xff08;2023/01/01 7:00&#xff09;条件查询该时间是否存在outlook信息时&#xff0c;明明存在一条数据&#xff0c;就是查询不出来数据 c#代码 Strin…

Observability:Synthetic monitoring - 动手实践

在我之前的如下文章里&#xff1a; Observability&#xff1a;Synthetic monitoring - 合成监测入门&#xff08;一&#xff09;&#xff08;二&#xff09; Observability&#xff1a;Synthetic monitoring - 创建浏览器监测&#xff0c;配置单独的浏览器监测器及项目 我详…

数据预处理matlab

matlab数据的获取、预处理、统计、可视化、降维 数据的预处理 - MATLAB & Simulink - MathWorks 中国https://ww2.mathworks.cn/help/matlab/preprocessing-data.html 一、数据的获取 1.1 从Excel中获取 使用readtable() 例1&#xff1a; 使用spreadsheetImportOption…

Vue整体架构分解

Vue.js的整体架构可以分解为以下几个部分: 文章目录 1. 数据驱动2. 组件化3. 响应式系统4. 虚拟DOM5. 插件系统6. 单文件组件7. 模板编译总结 1. 数据驱动 Vue的一个核心特点是数据驱动。Vue会在初始化的时候给数据提供一个observe监听&#xff0c;当数据变化时&#xff0c;会…

uniapp 微信小程序 input详解 带小数点的input、可查看密码的输入框input

官网文档地址 1、template <!-- 本示例未包含完整css&#xff0c;获取外链css请参考上文&#xff0c;在hello uni-app项目中查看 --> <template><view><view class"uni-common-mt"><view class"uni-form-item uni-column"&g…

【C++】开源:跨平台轻量日志库easyloggingpp

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍跨平台轻量日志库easyloggingpp。 无专精则不能成&#xff0c;无涉猎则不能通。。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&am…

详细介绍Matlab中线性规划算法的使用

Matlab中提供了用于线性规划的优化工具箱&#xff0c;其中包含了多种算法&#xff0c;如单纯形法、内点法等。线性规划是一种优化问题&#xff0c;旨在找到一组变量的最佳值&#xff0c;以最大化或最小化线性目标函数&#xff0c;同时满足一组线性约束条件。 下面将详细介绍Ma…

【C++11】智能指针的定义 和 种类 及 使用

智能指针 定义 为什么需要智能指针 在C中&#xff0c;动态分配内存是一项常见的任务&#xff0c;但手动管理分配和释放内存可能会导致很多问题&#xff0c;如内存泄漏、悬垂指针以及多次释放同一块内存等。为了避免这些问题&#xff0c;引入了智能指针的概念&#xff0c;它们…

LiveGBS流媒体平台GB/T28181功能-海康NVR摄像机自带物联网卡摄像头注册GB/T28181国标平台看不到设备的时候如何抓包及排查

海康大华宇视华为等硬件NVR摄像机注册到LiveGBS国标平台看不到设备的时候如何抓包及排查 1、设备注册后查看不到1.1、是否是自带物联网卡的摄像头1.2、关闭萤石云1.3、防火墙排查1.4、端口排查1.5、IP地址排查1.6、设备TCP/IP配置排查1.7、设备多网卡排查1.8、设备接入配置参数…

Docker(四)

文章目录 1. docker其他命令补充2. docker-registry使用3. docker-hub的使用4. 企业级私有仓库harbor4.1 harbor安装4.2 harbor配置https4.3 harbor常见使用4.3.1 harbor新建项目仓库4.3.2 harbor创建用户4.3.3 harbor仓库管理4.3.4 harbor复制管理4.3.5 harbor删除镜像 5. doc…

K8S下如何搭建eureka集群

背景 传统应用上云&#xff0c;基于传统应用需要考虑上云的方案和改造成本&#xff0c;这也是传统应用上云过程中的难点&#xff0c;本篇介绍3台eureka搭建的方案。 方案一 此方案借助了K8S中Service的一些功能。 这种方案是传统方案的简单迁移版本&#xff0c;比较易于理解…