数据名称:
Landsat9_C2_SR
数据来源:
USGS
时空范围:
2022年1月-2023年3月
空间范围:
全国
数据简介:
Landsat9_C2_SR数据集是经大气校正后的地表反射率数据,属于Collection2的二级数据产品,空间分辨率为30米,基于Landsat生态系统扰动自适应处理系统(LEDAPS)(版本3.4.0)生成。水汽、臭氧、大气高度、气溶胶光学厚度、数字高程与Landsat数据一起输入到太阳光谱(6S)辐射传输模型中对卫星信号进行二次模拟,以生成大气顶部(TOA)反射率、表面反射率、TOA亮度温度和云、云影、陆地、水体的掩膜。前言 – 人工智能教程
Landsat 9是美国国家航空航天局(NASA)和美国地质调查局(USGS)合作开发的遥感卫星,于2021年9月27日发射并投入使用。Landsat 9的数据被广泛用于地表观测、环境监测、气候变化研究、城市规划、农业管理等多个领域。其中,Landsat 9的第二级表面反射率(SR)数据集(Collection 2 Surface Reflectance,简称C2_SR)是其中一种常用数据集。
C2_SR数据集是通过对Landsat 9遥感卫星获取的原始数据进行校正和处理得到的。校正包括辐射校正和几何校正。辐射校正通过将原始数据转换为表面反射率来消除大气干扰。几何校正则通过对原始数据进行校正,保证数据的地理位置和几何形状的准确性。经过这些校正和处理步骤,C2_SR数据集能够提供高质量的地表反射率数据。
C2_SR数据集包含多波段的遥感影像,包括蓝光、绿光、红光、近红外、短波红外等波段。这些波段的数据可以用于提取地表特征,如植被覆盖、土地利用变化、水体分布等。此外,C2_SR数据集还提供了云掩模和亮度温度等附加产品,用于进行云检测和表观温度估计。
C2_SR数据集具有以下特点和优势。首先,Landsat 9是一颗多光谱遥感卫星,具有较高的空间分辨率,可以提供30米的分辨率图像。这使得C2_SR数据集适用于较小尺度的地表观测和分析。其次,C2_SR数据集具有较长的时间序列,可以追踪和分析地表变化。这对于监测环境变化和进行长期的地表研究具有重要意义。此外,C2_SR数据集还提供了高质量的数据产品,经过严格的校正和处理,可以提供准确和可靠的地表反射率数据。
C2_SR数据集的应用非常广泛。在地表观测方面,C2_SR数据集可以用于监测植被生长状况、土地利用变化、森林健康状况等。在环境监测方面,C2_SR数据集可以用于监测水体分布和水质状况、土地退化和沙漠化等。在城市规划方面,C2_SR数据集可以用于获取城市扩展和土地利用变化的信息。在农业管理方面,C2_SR数据集可以用于农作物监测和农业生产估算。此外,C2_SR数据集还可以用于气候变化研究、灾害监测和资源管理等方面。
总之,Landsat 9的C2_SR数据集是一种重要的地表观测数据集,具有高质量的地表反射率数据,广泛应用于地表观测、环境监测、气候变化研究等多个领域。它提供了丰富的波段和附加产品,可以用于提取地表特征、监测地表变化,为各种应用提供基础数据。
波段
名称 | 单位 | 最小值 | 最大值 | 乘法比例因子 | 加性比例因子 | 波长范围(微米) | 描述 |
---|---|---|---|---|---|---|---|
B1 | Reflectance | 1 | 65455 | 0.0000275 | -0.2 | 0.435-0.451 | Band 1 (ultra blue, coastal aerosol) surface reflectance |
B2 | Reflectance | 1 | 65455 | 0.0000275 | -0.2 | 0.452-0.512 | Band 2 (blue) surface reflectance |
B3 | Reflectance | 1 | 65455 | 0.0000275 | -0.2 | 0.533-0.590 | Band 3 (green) surface reflectance |
B4 | Reflectance | 1 | 65455 | 0.0000275 | -0.2 | 0.636-0.673 | Band 4 (red) surface reflectance |
B5 | Reflectance | 1 | 65455 | 0.0000275 | -0.2 | 0.851-0.879 | Band 5 (near infrared) surface reflectance |
B6 | Reflectance | 1 | 65455 | 0.0000275 | -0.2 | 1.566-1.651 | Band 6 (shortwave infrared 1) surface reflectance |
B7 | Reflectance | 1 | 65455 | 0.0000275 | -0.2 | 2.107-2.294 | Band 7 (shortwave infrared 2) surface reflectance |
SR_QA_AEROSOL | Bit index | Aerosol attributes | |||||
QA_PIXEL | Bit Index | 21824 | 65534 | Landsat Collection 2 QA Bitmask | |||
QA_RADSAT | Bit Index | 0 | 3829 | Radiometric saturation QA |
引用代码:
LANDSAT_9/02/T1/SR
代码
/*** @File : Landsat9_C2_SR_T1* @Time : 2023/03/07* @Author : GEOVIS Earth Brain* @Version : 0.1.0* @Contact : 中国(安徽)自由贸易试验区合肥市高新区望江西路900号中安创谷科技园一期A1楼36层* @License : (C)Copyright 中科星图数字地球合肥有限公司 版权所有* @Desc : 数据集key为LANDSAT_9/02/T1/SR的Landsat9_C2_SR类数据集* @Name : Landsat9_C2_SR_T1数据集
*/
//指定检索数据集,可设置检索的空间和时间范围,以及属性过滤条件(如云量过滤)
var imageCollection = gve.ImageCollection("LANDSAT_9/02/T1/SR").filterCloud('lt',20).filterDate('2022-01-20','2022-02-15').select(['B2','B3','B4']).limit(10);print("imageCollection",imageCollection);
//function applyScaleFactors(image) {
// var opticalBands = image.select('B.*').multiply(0.0000275).add(-0.2);
// return image.addBands(opticalBands, null, true)
//}
//
//var img = imageCollection.map(applyScaleFactors).first();
var img = imageCollection.first();
print("first", img);
var visParams = {
// min: 1,
// max: 65454,
// gamma: 1,
// brightness: 1,bands: ['B4', 'B3', 'B2']
};
Map.centerObject(img);
Map.addLayer(img,visParams);
引用
Landsat 数据集属于国际公开数据,可以在没有版权限制的情况下使用、传输或复制。有关USGS数据产品正确引用的更多详细信息,请参阅USGS Visual Identity System Guidancehttps://www.usgs.gov/information-policies-and-instructions/usgs-visual-identity-system