中科星图——Landsat9_C2_SR大气校正后的地表反射率数据

数据名称:

Landsat9_C2_SR

数据来源:

USGS

时空范围:

2022年1月-2023年3月

空间范围:

全国

数据简介:

Landsat9_C2_SR数据集是经大气校正后的地表反射率数据,属于Collection2的二级数据产品,空间分辨率为30米,基于Landsat生态系统扰动自适应处理系统(LEDAPS)(版本3.4.0)生成。水汽、臭氧、大气高度、气溶胶光学厚度、数字高程与Landsat数据一起输入到太阳光谱(6S)辐射传输模型中对卫星信号进行二次模拟,以生成大气顶部(TOA)反射率、表面反射率、TOA亮度温度和云、云影、陆地、水体的掩膜。前言 – 人工智能教程

Landsat 9是美国国家航空航天局(NASA)和美国地质调查局(USGS)合作开发的遥感卫星,于2021年9月27日发射并投入使用。Landsat 9的数据被广泛用于地表观测、环境监测、气候变化研究、城市规划、农业管理等多个领域。其中,Landsat 9的第二级表面反射率(SR)数据集(Collection 2 Surface Reflectance,简称C2_SR)是其中一种常用数据集。

C2_SR数据集是通过对Landsat 9遥感卫星获取的原始数据进行校正和处理得到的。校正包括辐射校正和几何校正。辐射校正通过将原始数据转换为表面反射率来消除大气干扰。几何校正则通过对原始数据进行校正,保证数据的地理位置和几何形状的准确性。经过这些校正和处理步骤,C2_SR数据集能够提供高质量的地表反射率数据。

C2_SR数据集包含多波段的遥感影像,包括蓝光、绿光、红光、近红外、短波红外等波段。这些波段的数据可以用于提取地表特征,如植被覆盖、土地利用变化、水体分布等。此外,C2_SR数据集还提供了云掩模和亮度温度等附加产品,用于进行云检测和表观温度估计。

C2_SR数据集具有以下特点和优势。首先,Landsat 9是一颗多光谱遥感卫星,具有较高的空间分辨率,可以提供30米的分辨率图像。这使得C2_SR数据集适用于较小尺度的地表观测和分析。其次,C2_SR数据集具有较长的时间序列,可以追踪和分析地表变化。这对于监测环境变化和进行长期的地表研究具有重要意义。此外,C2_SR数据集还提供了高质量的数据产品,经过严格的校正和处理,可以提供准确和可靠的地表反射率数据。

C2_SR数据集的应用非常广泛。在地表观测方面,C2_SR数据集可以用于监测植被生长状况、土地利用变化、森林健康状况等。在环境监测方面,C2_SR数据集可以用于监测水体分布和水质状况、土地退化和沙漠化等。在城市规划方面,C2_SR数据集可以用于获取城市扩展和土地利用变化的信息。在农业管理方面,C2_SR数据集可以用于农作物监测和农业生产估算。此外,C2_SR数据集还可以用于气候变化研究、灾害监测和资源管理等方面。

总之,Landsat 9的C2_SR数据集是一种重要的地表观测数据集,具有高质量的地表反射率数据,广泛应用于地表观测、环境监测、气候变化研究等多个领域。它提供了丰富的波段和附加产品,可以用于提取地表特征、监测地表变化,为各种应用提供基础数据。

波段

名称单位最小值最大值乘法比例因子加性比例因子波长范围(微米)描述
B1Reflectance1654550.0000275-0.20.435-0.451Band 1 (ultra blue, coastal aerosol) surface reflectance
B2Reflectance1654550.0000275-0.20.452-0.512Band 2 (blue) surface reflectance
B3Reflectance1654550.0000275-0.20.533-0.590Band 3 (green) surface reflectance
B4Reflectance1654550.0000275-0.20.636-0.673Band 4 (red) surface reflectance
B5Reflectance1654550.0000275-0.20.851-0.879Band 5 (near infrared) surface reflectance
B6Reflectance1654550.0000275-0.21.566-1.651Band 6 (shortwave infrared 1) surface reflectance
B7Reflectance1654550.0000275-0.22.107-2.294Band 7 (shortwave infrared 2) surface reflectance
SR_QA_AEROSOLBit indexAerosol attributes
QA_PIXELBit Index2182465534Landsat Collection 2 QA Bitmask
QA_RADSATBit Index03829Radiometric saturation QA

 

引用代码:

LANDSAT_9/02/T1/SR

代码 

/*** @File    :   Landsat9_C2_SR_T1* @Time    :   2023/03/07* @Author  :   GEOVIS Earth Brain* @Version :   0.1.0* @Contact :   中国(安徽)自由贸易试验区合肥市高新区望江西路900号中安创谷科技园一期A1楼36层* @License :   (C)Copyright 中科星图数字地球合肥有限公司 版权所有* @Desc    :  数据集key为LANDSAT_9/02/T1/SR的Landsat9_C2_SR类数据集* @Name    :   Landsat9_C2_SR_T1数据集
*/
​
//指定检索数据集,可设置检索的空间和时间范围,以及属性过滤条件(如云量过滤)
var imageCollection = gve.ImageCollection("LANDSAT_9/02/T1/SR").filterCloud('lt',20).filterDate('2022-01-20','2022-02-15').select(['B2','B3','B4']).limit(10);print("imageCollection",imageCollection);
​
//function applyScaleFactors(image) {
//    var opticalBands = image.select('B.*').multiply(0.0000275).add(-0.2);
//    return image.addBands(opticalBands, null, true)
//}
//
//var img = imageCollection.map(applyScaleFactors).first();
var img = imageCollection.first();
​
print("first", img);
​
var visParams = {
//    min: 1,
//    max: 65454,
//    gamma: 1,
//    brightness: 1,bands: ['B4', 'B3', 'B2']
};
​
Map.centerObject(img);
Map.addLayer(img,visParams);

 

引用

 Landsat 数据集属于国际公开数据,可以在没有版权限制的情况下使用、传输或复制。有关USGS数据产品正确引用的更多详细信息,请参阅USGS Visual Identity System Guidancehttps://www.usgs.gov/information-policies-and-instructions/usgs-visual-identity-system

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/618736.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux |离线安装软件 | rpm命令

离线 安装包管理命令 rpm ##### #检查安装包是否认证成功 简单讲 来源是否可靠 rpm --checksig xxx.rpmrpm --checksig nmap-7.92-1.x86_64.rpm nmap-7.92-1.x86_64.rpm: sha1 md5 OK#### 安装前检验包的依赖库 rpm -qpR nmap-7.92-1.x86_64.rpm python > 2.4 rpmlib(Fil…

128基于matlab的粒子群优化算法寻找多元函数的最大值

基于matlab的粒子群优化算法寻找多元函数的最大值,可定义多元函数,变量区间范围,输出最大值条件下的变量值。程序已调通,可直接运行。 128matlab多元函数极值 (xiaohongshu.com)

Sectigo有几种泛域名SSL证书买一年送一个月

Sectigo是一家知名的数字证书颁发机构,提供了很多种类型的SSL证书,可以满足不同用户的需求。其中,泛域名SSL证书是一种常见的证书类型,可以同时保护主域名以及主域名下所有子域名。今天就随SSL盾小编了解Sectigo旗下有几种泛域名S…

【origin】负载牵引的Smith圆图

【origin】负载牵引的Smith圆图 1.从ADS导入数据到origin2.smith圆图3.扩展到多组线4.参考资料 1.从ADS导入数据到origin export导出为txt,得到的是幅相值,复制到excel如下图,有多根类似格式的线,只需要复制DE列到origin中 复制到…

腾讯云COS桶文件上传下载工具类

1&#xff0c;申请key和密钥 2&#xff0c;引入依赖 <dependency><groupId>com.qcloud</groupId><artifactId>cos_api</artifactId><version>5.6.24</version></dependency>3&#xff0c;工具类 package com.example.activi…

在qml中,loader创建的组件,此时当loader的souceComponet变了其他组件,那么之前创建的组件还在吗?

在 QML 中&#xff0c;当 Loader 的 sourceComponent 属性变更为其他组件时&#xff0c;之前创建的组件会被销毁。这是因为 Loader 负责加载和卸载不同的组件。 以下是一个简单的例子&#xff0c;演示 Loader 的工作方式&#xff1a; import QtQuick 2.0Rectangle {width: 36…

怎么找微信服务器的IP地址

首先&#xff0c;让微信客户端在PC端运行&#xff0c;在任务管理器->详细信息中&#xff0c;找到WeChat.exe的进程&#xff0c;找到PID 就是微信进程的ID号&#xff0c;如下图所示&#xff1a; 打开一个命令行窗口&#xff0c;cmd或者powershell窗口都可以&#xff0c;输入…

筛选数据-第15届蓝桥第三次STEMA测评Scratch真题精选

[导读]&#xff1a;超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成&#xff0c;后续会不定期解读蓝桥杯真题&#xff0c;这是Scratch蓝桥杯真题解析第164讲。 第15届蓝桥杯第3次STEMA测评已于2023年12月17日落下帷幕&#xff0c;编程题一共有6题&#xff0c;分别如下&…

transforms.Compose()函数作用解析

这是一个torchvision.transforms模块的函数&#xff0c;用于将一系列变换组合成一个新的变换序列。它接受一个变换列表&#xff0c;该列表包含一系列的图像处理操作&#xff0c;例如图像随机缩放、裁剪、旋转和翻转等。 在创建变换序列时&#xff0c;可以按照自己需要的顺序添…

大数据之谷歌文件系统论文 GFS The Google File System

原文地址 谷歌文件系统论文 摘要 我们设计并实现了Google文件系统&#xff0c;这是一个面向大规模分布式数据密集型应用的可扩展分布式文件系统。 它在廉价的通用硬件上运行&#xff0c;提供了容错性&#xff0c;并向大量客户端提供高聚合性能。 尽管与先前的分布式文件系统…

2023 我的编程之旅——路人贾‘ω‘

哈喽&#xff01;大家好&#xff0c;我是路人贾&#x1f601;~今天不读论文也不讲算法&#xff0c;来聊点有意思的&#xff01; 这是我第100篇博文&#xff0c;我翻了几遍草稿箱的库存&#xff0c;正纠结选哪篇时&#xff0c;一抬头看见了这个活动&#xff0c;眼前瞬间一亮——…

YOLOv8改进 | 融合改进篇 | CCFM + Dyhead完美融合突破极限涨点 (全网独家首发)

一、本文改进 本文给大家带来的改进机制是CCFM配合Dyhead检测头实现融合涨点,这个结构配合在一起只能说是完美的融合,看过我之前的检测头篇的读者都知道Dyhead官方版本支持的输入通道数是需要保持一致的,但是CCFM作为RT-DETR的Neck结构其输出通道数就是一致的,所以将这两种…

高防服务器、高防 IP 和高防 CDN 之间有什么区别?

网络运营人员最头痛的是什么&#xff1f; 网络攻击无疑名列前茅。一旦企业遭受网络攻击&#xff0c;所面临的损失可能是无法估量的。那么&#xff0c;如何有效地抵御网络攻击呢&#xff1f; 高防 IP、高防 CDN 和高防服务器是当前主流的防御手段。那何为“高防”呢&#xff1…

在qml中,ListModel可以与WorkerScript一起使用,从多个线程访问列表模型

在QML中&#xff0c;您可以使用ListModel和WorkerScript一起实现多线程访问列表模型。以下是一个简单的例子&#xff0c;演示了如何在QML中使用这两个元素&#xff1a; import QtQuick 2.15 import QtQuick.Controls 2.15ApplicationWindow {visible: truewidth: 400height: 3…

【深度学习每日小知识】Overfitting 过拟合

过拟合是机器学习&#xff08;ML&#xff09;中的常见问题&#xff0c;是指模型过于复杂&#xff0c;泛化能力较差的场景。当模型在有限数量的数据上进行训练&#xff0c;并且学习了特定于该特定数据集的模式&#xff0c;而不是适用于新的、看不见的数据的一般模式时&#xff0…

tkinter控件中文显示为unicode编码的解决办法

一、背景 最近使用python tkinter编写界面应用时&#xff0c;发现按钮的中文名称在windows上显示正常&#xff0c;但是在linux上显示为中文的unicode编码&#xff1b;文本输入框也是&#xff0c;输入中文输时&#xff0c;text控件上也显示为unicode编码&#xff0c;如下图所示…

4.4 媒资管理模块 - 分布式任务处理介绍、视频处理技术方案

媒资管理模块 - 视频处理 文章目录 媒资管理模块 - 视频处理一、视频转码1.1 视频转码介绍1.2 FFmpeg 基本使用1.2.1 下载安装配置1.2.2 转码测试 1.3 工具类1.3.1 VideoUtil1.3.2 Mp4VideoUtil1.3.3 测试工具类 二、分布式任务处理2.1 分布式任务调度2.2 XXL-JOB 配置执行器 中…

智能雾化壁炉设计,新时代科技与美学的完美结合

智能雾化壁炉设计&#xff0c;新时代科技与美学的完美结合 随着科技的不断创新&#xff0c;智能雾化壁炉设计成为家居设计领域的一颗耀眼明珠。它的出现不仅改变了传统壁炉的概念&#xff0c;更为我们带来了全新的视觉和感官体验。下面让我们一起探索智能雾化壁炉设计的优势和特…

jmeter和metersphere引用jar包报错Error invoking bsh method和 not found in namespace

2024-01-09 09:26:38 ERROR 54b7e26f 1-1 Error invoking bsh method: eval Sourced file: inline evaluation of: // BeanShell脚本开始 import com.example.demo.DemoApplication; DemoApplica . . . : Typed variable declaration : Class: DemoApplication not found in n…

activiti流程图+动态表单

使用技术 jeecg-bootactivitivue3form-create 简单效果展示 流程图绘制 审批人配置 动态表单配置 流程审批 流程审批记录 填写表单信息 源码地址 后台&#xff1a;https://gitee.com/houshixin/jmg-boot前端&#xff1a;https://gitee.com/houshixin/jmg-ui