C语言从入门到实战——数据在内存中的存储方式

数据在内存中的存储方式

  • 前言
  • 1. 整数在内存中的存储
  • 2. 大小端字节序和字节序判断
    • 2.1 什么是大小端
    • 2.2 为什么有大小端
    • 2.3 练习
      • 2.3.1 练习1
      • 2.3.2 练习2
      • 2.3.3 练习3
      • 2.3.4 练习4
      • 2.3.5 练习5
      • 2.3.6 练习6
  • 3. 浮点数在内存中的存储
    • 3.1 练习
    • 3.2 浮点数的存储
      • 3.2.1 浮点数存的过程
      • 3.2.2 浮点数取的过程
    • 3.3 题目解析


前言

数据在内存中的存储方式是以二进制形式存储的。计算机中的内存由一系列存储单元组成,每个存储单元都有一个唯一的地址,用于标识它在内存中的位置。计算机可以通过这些地址来定位并访问内存中的数据。

数据在内存中的存储方式取决于数据的类型。数值类型的数据(例如整数、浮点数等)以二进制形式存储,并根据类型的不同分配不同的存储空间。字符串和字符数据由ASCII码存储在内存中。数据结构(例如数组、结构体、链表等)的存储方式也取决于其类型和组织结构。

总之,数据在内存中以二进制形式存储,并根据其类型和组织方式分配不同的存储空间。


1. 整数在内存中的存储

整数的2进制表示方法有三种,即原码、反码和补码

三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最高位的一位是被当做符号位,剩余的都是数值位。

正整数的原、反、补码都相同

负整数的三种表示方法各不相同

原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。

反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码:反码+1就得到补码

为什么数据在内存中是按照补码存在的

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

你可以这样理解,为了简化电路,CPU里只存在加法器,使用补码,可以使加法器来计算减法,有人可能会问乘法呢?乘法只不过是加法多加几次而已。

2. 大小端字节序和字节序判断

当我们了解了整数在内存中存储后,我们调试看一个细节:

#include <stdio.h>
int main()
{int a = 0x11223344;return 0;
}

调试的时候,我们可以看到在a中的 0x11223344 这个数字是按照字节为单位,倒着存储的。这是为什么呢?

在这里插入图片描述

2.1 什么是大小端

其实超过一个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下面是具体的概念:

大端(存储)模式:是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。

小端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。

上述概念需要记住,方便分辨大小端。

2.2 为什么有大小端

为什么会有大小端模式之分呢?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit位,但是在C语言中除了8bit的 char 之外,还有16bit的 short 型,32bit的 long 型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么
0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

2.3 练习

2.3.1 练习1

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)-百度笔试题

//代码1
#include <stdio.h>
int check_sys()
{int i = 1;return (*(char *)&i);
}
int main()
{int ret = check_sys();if(ret == 1){printf("小端\n");}else{printf("大端\n");}return 0;
}
//代码2
int check_sys()
{union{int i;char c;}un;un.i = 1;return un.c;
}

代码1
在这里插入图片描述
代码2
在这里插入图片描述

2.3.2 练习2

#include <stdio.h>
int main()
{char a= -1;signed char b=-1;unsigned char c=-1;printf("a=%d,b=%d,c=%d",a,b,c);//无符号字符型没有符号位,return 0;
}

255 为什么等于 -127 呢? 是因为没有符号位的时候。
在这里插入图片描述

在这里插入图片描述

2.3.3 练习3

#include <stdio.h>
int main()
{char a = -128;printf("%u\n",a);return 0;
}

根据上面所示,这个也是同理,%u打印无符号整数,而-128表示的也就是最大值,而本题还有一个小点,char是字符型,%u打印无符号整数,要先发生整型提升,负数的整型提升提升的是符号位,然后就出现了如下的数字。
在这里插入图片描述

#include <stdio.h>
int main()
{char a = 128;printf("%u\n",a);return 0;
}

在这里插入图片描述

2.3.4 练习4

#include <stdio.h>
int main()
{char a[1000];int i;for(i=0; i<1000; i++){a[i] = -1-i;}printf("%d",strlen(a));return 0;
}

在这里插入图片描述

字符类型 char 也可以设置 signedunsignedsigned char c; // 范围为 -128 到 127
unsigned char c; // 范围为 0 到 255

可得上面代码是打印个数

2.3.5 练习5

#include <stdio.h>
unsigned char i = 0;
int main()
{for(i = 0;i<=255;i++){printf("hello world\n");}return 0;
}

在这里插入图片描述

unsigned char i = 0;
存储的最大空间是255255再加的话会变成0,所以出现死循环
#include <stdio.h>
int main()
{unsigned int i;for(i = 9; i >= 0; i--){printf("%u\n",i);}return 0;
}

同理,本题也是出现死循环

2.3.6 练习6

#include <stdio.h>
int main()
{int a[4] = { 1, 2, 3, 4 };int *ptr1 = (int *)(&a + 1);int *ptr2 = (int *)((int)a + 1);printf("%x,%x", ptr1[-1], *ptr2);return 0;
}

在这里插入图片描述

3. 浮点数在内存中的存储

常见的浮点数:3.14159、1E10等,浮点数家族包括: float double long double 类型。

浮点数表示的范围: float.h 中定义

3.1 练习

#include <stdio.h>
int main()
{int n = 9;float *pFloat = (float *)&n;printf("n的值为:%d\n",n);printf("*pFloat的值为:%f\n",*pFloat);*pFloat = 9.0;printf("num的值为:%d\n",n);printf("*pFloat的值为:%f\n",*pFloat);return 0;
}

3.2 浮点数的存储

上面的代码中, num *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:

V = (−1) S ∗ M ∗ 2E

  • (−1) S 表示符号位,当S=0,V为正数;当S=1,V为负数 (−1) S
  • M表示有效数字,M是大于等于1,小于2的
  • 2E表示指数位

举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×22

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×22 。那么,S=1,M=1.01,E=2。

IEEE 754规定:

对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M

对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M

float类型浮点数内存分配

在这里插入图片描述

double类型浮点数内存分配

在这里插入图片描述

3.2.1 浮点数存的过程

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面的说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂

首先,E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0 ~ 255;如果E为11位,它的取值范围为0 ~ 2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,210的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即 10001001

3.2.2 浮点数取的过程

指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。

比如:0.5的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2(-1),其阶码为-1+127(中间值)=126,表示为 01111110 ,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000 ,则其二进制表示形式为:

0 01111110 00000000000000000000000 

E全为0

这时,浮点数的指数E等于1-127(或者1 ~ 1023)即为真实值,有效数字M不再加上第①位的1,而是还原为0.xxxxxx小数。这样做是为了表示±0,以及接近于0的很小的数字。

0 00000000 00100000000000000000000

E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

0 11111111 00010000000000000000000 

3.3 题目解析

下面,让我们回到一开始的练习

先看第1环节,为什么 9 还原成浮点数,就成了 0.0000009以整型的形式存储在内存中,得到如下二进制序列:

0000 0000 0000 0000 0000 0000 0000 1001 

首先,将 9 的二进制序列按照浮点数的形式拆分,得到第一位符号位s=0,后面8位的指数E=00000000 ,最后23位的有效数字M=000 0000 0000 0000 0000 1001。

由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:
  V=(-1)0 * 0.00000000000000000001001∗2(-126)=1.001*2(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

再看第2环节,浮点数9.0,为什么整数打印是 1091567616 首先,浮点数9.0等于二进制的1001.0,即换算成科学计数法是:1.001 ∗ 23
所以:9.0 = (−1) ∗ 0 ∗ (1.001) ∗ 23
那么,第一位的符号位S=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010

所以,写成二进制形式,应该是S+E+M,即

0 10000010 001 0000 0000 0000 0000 0000

这个32位的二进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是1091567616 。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/618708.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

生态茶园建设方案——福建蜂窝物联

一、项目背景 为了进一步提高茶产业集约化、产业化发展水平&#xff0c;充分运用物联网、互联网等高新技术为产业赋能&#xff0c;加速推动安溪茶产业转型升级&#xff0c;县政府决定在安溪县推进“安溪智慧生态茶园项目”&#xff0c;并以茶叶重镇感德镇实施“安溪智慧生态茶园…

EVA-CLIP: Improved Training Techniques for CLIP at Scale论文解读

文章目录 前言一、摘要二、引言三、贡献四、模型方法五、论文链接总结 前言 最近&#xff0c;我一直在搞多模态大模型相关工作&#xff0c;也深知CLIP结构重要性&#xff0c;而EVA-CLIP论文是在CLIP模型基础上进行了一系列trick&#xff0c;实现优越CLIP模型的方法&#xff0c…

SAP SQVI制作报表及SE93创建事务代码

在平时的项目中&#xff0c;财务想查询所有的凭证明细&#xff0c;SAP的查询凭证FB03不能满足需求&#xff0c;所以用SQVI制作一个简易的查询报表。 1、打开SQVI&#xff0c;填写自开发报表的名称“ZFB03”&#xff0c;点击“创建”&#xff0c;输入自开发报表的名称“凭证明细…

【AIGC】Controlnet:基于扩散模型的文生图的可控性

前言 controlnet可以让stable diffusion的生图变得可控。 文章连接&#xff1a;https://arxiv.org/pdf/2302.05543.pdf 摘要 冻结了stable diffusion的预训练模型并重用它的预训练编码层神经网络结构与零初始化卷积层连接&#xff0c;从零开始逐渐增加参数&#xff0c;并确…

Matlab:toposort

语法&#xff1a; n toposort(G) %调用toposort函数&#xff0c;对有向图G进行拓扑排序&#xff0c;并将排序结果存储在变量n中 n toposort(G,Order,algorithm) [n,H] toposort(___) %使用了两个输出参数的形式来调用toposort函数。除了返回排序结果n外&am…

数字集成电路VLSI复习笔记

逻辑门符号 Inverter CMOS NAND Gate CMOS NOR Gate MOS Capacitor nmos cutoff Linear Saturation Channel Charge Carrier velocity nMOS Linear I-V nMOS Saturation I-V Summary nMOS Operation pMOS Operation Inverter Step Response Delay Definitions 3-input NAND Ca…

只不过孤岛罢了:我的2023年总结

2023已悄然过去&#xff0c;还记得跨年夜那天&#xff0c;我突然接到一星期要期末考的消息&#xff0c;我的内心是多么奔溃&#xff0c;先不说一天一门强度如此之高&#xff0c;重要的是矩阵论&#xff0c;工程优化等等科目&#xff0c;还要速成&#xff0c;于是麻木得预习一日…

怎么理解接口幂等,项目中如何保证的接口幂等

都 2024 年了&#xff0c;竟然还有人不知道接口幂等是什么东西。 hi&#xff0c;大家好&#xff0c;我是 浮生 今天正好有空&#xff0c;给大家分享一下 幂等的实现。 什么是幂等&#xff1f; 一、问题解析 简单来说&#xff0c;就是一个接口&#xff0c;使用相同的参数重复执…

2.右值引用和移动语义

文章目录 右值引用和移动语义&&的特性右值引用优化性能&#xff0c;避免深拷贝移动(move )语义forward 完美转发emplace_back 减少内存拷贝和移动unordered container 无序容器map和unordered_map的差别内部实现机理不同优缺点以及适用处 小结优缺点以及适用处 小结 代…

哈希表的实现(1)----除留余数法实现

一&#xff0c;哈希表的介绍 哈希表是一种通过哈希思想实现的一种数据结构。哈希表这种数据结构的特点便是可以通过一个值快速的定位这个值所在的位置实现插入&#xff0c;删除&#xff0c;查找。在这篇博客里面&#xff0c;我们便来实现一个通过除留余数法实现的一个哈希表。 …

IntersectionObserver

IntersectionObserver 这个API主要实现图片懒加载、加载更多等等。 该API作用是观察两个元素之间有没有交叉&#xff0c;有没有重叠 现在要做的是当图片跟视口有交叉的情况下&#xff0c;把data-src的图片路径替换给src属性 //第一个参数是 回调&#xff0c;第二个参数的 配置…

HarmonyOS4.0 系列——06、渲染之条件渲染、循环渲染以及懒加载渲染

HarmonyOS4.0 系列——06、渲染之条件渲染、循环渲染以及懒加载渲染 if/else&#xff1a;条件渲染 ArkTS 提供了渲染控制的能力。条件渲染可根据应用的不同状态&#xff0c;使用 if、else 和 else if 渲染对应状态下的 UI 内容。 写法和 TS 的一样&#xff0c;简单看一下即可…

【数据结构之树和二叉树】

数据结构学习笔记---007 数据结构之树和二叉树概念篇1、树的概念和结构1.1、树的相关概念1.2、树的存储结构 2、二叉树概念及结构2.1、二叉树概念2.2、满二叉树2.3、完全二叉树2.4、满二叉树或完全二叉树的存储形式 3、堆的概念及结构3.1、堆的性质3.2、堆的意义 4、二叉树的存…

python_selenium_安装基础学习

目录 1.为什么使用selenium 2.安装selenium 2.1Chrome浏览器 2.2驱动 2.3下载selenium 2.4测试连接 3.selenium元素定位 3.1根据id来找到对象 3.2根据标签属性的属性值来获取对象 3.3根据xpath语句来获取对象 3.4根据标签的名字获取对象 3.5使用bs4的语法来获取对象…

解惑:测试圈网红工具 Jmeter 到底难在哪里

作为一名测试人员&#xff0c;你是否也曾经遇到过这些问题&#xff1a; 同样的起点&#xff0c;同样的工作时间&#xff0c;为什么别人接那么多项目&#xff0c;你还是在点点点&#xff1b;为什么别人升职了&#xff0c;而你还在原地踏步&#xff1f; 同样的工作内容&#xf…

数据库的数据类型

文章目录 前言一、数据类型数据类型分类数值类型bit类型小数类型floatdecimal 字符串类型charvarcharchar和varchar比较 日期和时间类型enum和set 前言 一、数据类型 数据类型分类 数值类型 下面我们来创建一个表&#xff0c;表中创建一个tinyint类型的数据。当我们不指定tiny…

【贪心】重构字符串

/*** 思路&#xff1a;如果s长度小于2&#xff0c;直接返回s&#xff0c;假设字符串s的长度为n。* n为偶数&#xff0c;如果字符串中的某个字符数量超过 n/2 则肯定会存在相邻的字符。* n为奇数&#xff0c;如果字符串中的某个字符的数量超过 &#xff08;n1&am…

机器学习顶会ICML 2024今日开放投稿,CCF A类,中稿率27.94%(附ICML23杰出论文+18篇高分论文)

ICML 2024今天开放投稿了&#xff01;距离截稿还有24天&#xff0c;想冲ICML的同学速度&#xff01; ICML 全称 International Conference on Machine Learning&#xff0c;由国际机器学习学会&#xff08;IMLS&#xff09;举办&#xff0c;与NIPS一同被认为是人工智能、机器学…

debian 11 arm64 aarch64 D2000 平台编译 box86 box64 笔记

参考资料 https://github.com/ptitSeb/box86/blob/master/docs/COMPILE.md 源码地址 GitHub - ptitSeb/box86: Box86 - Linux Userspace x86 Emulator with a twist, targeted at ARM Linux devices deb在线源地址&#xff08;打不开&#xff09;&#xff1a; Itais box86…

腾讯云免费服务器怎么申请?腾讯云免费服务器申请难吗?

腾讯云免费服务器申请入口 https://curl.qcloud.com/FJhqoVDP 免费服务器可选轻量应用服务器和云服务器CVM&#xff0c;轻量配置可选2核2G3M、2核8G7M和4核8G12M&#xff0c;CVM云服务器可选2核2G3M和2核4G3M配置&#xff0c;腾讯云服务器网txyfwq.com分享2024年最新腾讯云免费…