2.右值引用和移动语义

文章目录

  • 右值引用和移动语义
    • &&的特性
    • 右值引用优化性能,避免深拷贝
    • 移动(move )语义
    • forward 完美转发
    • emplace_back 减少内存拷贝和移动
    • unordered container 无序容器
      • map和unordered_map的差别
      • 内部实现机理不同
      • 优缺点以及适用处
    • 小结
      • 优缺点以及适用处
    • 小结

代码地址:https://github.com/Phoenix8215/CplusplusMagicalCrafts

右值引用和移动语义

作用:C++11中引用了右值引用和移动语义,可以避免无谓的复制,提高了程序性能。

左值是表达式结束后仍然存在的持久对象,右值是指表达式结束时就不存在的临时对象。

  • 区分左值和右值的便捷方法是看能不能对表达式取地址,如果能则为左值,否则为右值;

  • 将亡值是C++11新增的、与右值引用相关的表达式,比如:将要被移动的对象、T&&函数返回的 值、std::move返回值和转换成T&&的类型的转换函数返回值。

C++11中的所有的值必将属于左值、将亡值、纯右值三者之一,将亡值和纯右值都属于右值。 区分表达式的左右值属性:如果可对表达式用&符取址,则为左值,否则为右值。

左值 lvalue 是有标识符、可以取地址的表达式,最常见的情况有:

  • 变量、函数或数据成员的名字
  • 返回左值引用的表达式,如 ++x、x = 1、cout << ’ ’
  • 字符串字面量如 “hello world”

纯右值 prvalue 是没有标识符、不可以取地址的表达式,一般也称之为“临时对象”。最常见的情况有:

  • 返回非引用类型的表达式,如 x++、x + 1、make_shared(42)
  • 除字符串字面量之外的字面量,如 42、true

&&的特性

右值引用就是对一个右值进行引用的类型。因为右值没有名字,所以我们只能通过引用的方式找到它。 无论声明左值引用还是右值引用都必须立即进行初始化,因为引用类型本身并不拥有所把绑定对象的内 存,只是该对象的一个别名。

通过右值引用的声明,该右值又“重获新生”,其生命周期其生命周期与右值引用类型变量的生命周期一 样,只要该变量还活着,该右值临时量将会一直存活下去。

&& 的总结如下:

  1. 左值和右值是独立于它们的类型的,右值引用类型可能是左值也可能是右值。
  2. auto&& 或函数参数类型自动推导的 T&& 是一个未定的引用类型,被称为 universal references, 它可能是左值引用也可能是右值引用类型,取决于初始化的值类型。
  3. 所有的右值引用叠加到右值引用上仍然是一个右值引用,其他引用折叠都为左值引 用。当 T&& 为 模板参数时,输入左值,它会变成左值引用,而输入右值时则变为具名的右 值引用。
  4. 编译器会将已命名的右值引用视为左值,而将未命名的右值引用视为右值。

右值引用优化性能,避免深拷贝

对于含有堆内存的类,我们需要提供深拷贝的拷贝构造函数,如果使用默认构造函数,会导致堆内存的 重复删除,比如下面的代码:

//2-1-memory
#include <iostream>
using namespace std;
class A
{public:A() :m_ptr(new int(0)) {cout << "constructor A" << endl;}~A(){cout << "destructor A, m_ptr:" << m_ptr << endl;delete m_ptr;m_ptr = nullptr;}private:int* m_ptr;
};
// 为了避免返回值优化,此函数故意这样写
A Get(bool flag)
{A a;A b;cout << "ready return" << endl;if (flag)return a;elsereturn b;
}
int main()
{{A a = Get(false); // 运行报错}cout << "main finish" << endl;return 0;
}
/*
constructor A 
constructor A 
ready return 
destructor A, m_ptr:0xf87af8 
destructor A, m_ptr:0xf87ae8 
destructor A, m_ptr:0xf87af8 
main finish 
*/

在上面的代码中,默认构造函数是浅拷贝,main函数的 a 和Get函数的 b 会指向同一个指针 m_ptr,在 析构的时候会导致重复删除该指针。正确的做法是提供深拷贝的拷贝构造函数,比如下面的代码(关闭 返回值优化的情况下):

//2-1-memory2
#include <iostream>
using namespace std;
class A
{public:A() :m_ptr(new int(0)) {cout << "constructor A" << endl;}A(const A& a) :m_ptr(new int(*a.m_ptr)) {cout << "copy constructor A" << endl;}~A(){cout << "destructor A, m_ptr:" << m_ptr << endl;delete m_ptr;m_ptr = nullptr;}private:int* m_ptr;
};
// 为了避免返回值优化,此函数故意这样写
A Get(bool flag)
{A a;A b;cout << "ready return" << endl;if (flag)return a;elsereturn b;
}
int main()
{{A a = Get(false); // 正确运行}cout << "main finish" << endl;return 0;
}
/*
constructor A
constructor A
ready return
copy constructor A
destructor A, m_ptr:0xea7af8
destructor A, m_ptr:0xea7ae8
destructor A, m_ptr:0xea7b08
main finish
*/

这样就可以保证拷贝构造时的安全性,但有时这种拷贝构造却是不必要的,比如上面代码中的拷贝构造 就是不必要的。上面代码中的 Get 函数会返回临时变量,然后通过这个临时变量拷贝构造了一个新的对 象 b,临时变量在拷贝构造完成之后就销毁了,如果堆内存很大,那么,这个拷贝构造的代价会很大, 带来了额外的性能损耗。有没有办法避免临时对象的拷贝构造呢?答案是肯定的。看下面的代码:

//2-1-memory3
#include <iostream>
using namespace std;
class A
{public:A() :m_ptr(new int(0)) {cout << "constructor A" << endl;}A(const A& a) :m_ptr(new int(*a.m_ptr)) {cout << "copy constructor A" << endl;}A(A&& a) :m_ptr(a.m_ptr) {a.m_ptr = nullptr;cout << "move constructor A" << endl;}~A(){cout << "destructor A, m_ptr:" << m_ptr << endl;if(m_ptr)delete m_ptr;}private:int* m_ptr;
};
// 为了避免返回值优化,此函数故意这样写
A Get(bool flag)
{A a;A b;cout << "ready return" << endl;if (flag)return a;elsereturn b;
}
int main()
{{A a = Get(false); // 正确运行}cout << "main finish" << endl;return 0;
}/*
constructor A
constructor A
ready return
move constructor A
destructor A, m_ptr:0
destructor A, m_ptr:0xfa7ae8
destructor A, m_ptr:0xfa7af8
main finish
*/

上面的代码中没有了拷贝构造,取而代之的是移动构造( Move Construct)。从移动构造函数的实现 中可以看到,它的参数是一个右值引用类型的参数 A&&,这里没有深拷贝,只有浅拷贝,这样就避免了 对临时对象的深拷贝,提高了性能。这里的 A&& 用来根据参数是左值还是右值来建立分支,如果是临时 值,则会选择移动构造函数。移动构造函数只是将临时对象的资源做了浅拷贝,不需要对其进行深拷 贝,从而避免了额外的拷贝,提高性能。这也就是所谓的移动语义( move 语义),右值引用的一个重 要目的是用来支持移动语义的。

移动语义可以将资源(堆、系统对象等)通过浅拷贝方式从一个对象转移到另一个对象,这样能够减少 不必要的临时对象的创建、拷贝以及销毁,可以大幅度提高 C++ 应用程序的性能,消除临时对象的维护 (创建和销毁)对性能的影响。

以一个简单的 string 类为示例,实现拷贝构造函数和拷贝赋值操作符。

//2-1-mystring
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <string.h>
using namespace std;
class MyString {private:char* m_data;size_t m_len;void copy_data(const char *s) {m_data = new char[m_len+1];memcpy(m_data, s, m_len);m_data[m_len] = '\0';}public:MyString() {m_data = NULL;m_len = 0;}MyString(const char* p) {m_len = strlen (p);copy_data(p);}MyString(const MyString& str) {m_len = str.m_len;copy_data(str.m_data);std::cout << "Copy Constructor is called! source: " << str.m_data <<std::endl;}MyString& operator=(const MyString& str) {if (this != &str) {m_len = str.m_len;copy_data(str.m_data);}std::cout << "Copy Assignment is called! source: " << str.m_data <<std::endl;return *this;}virtual ~MyString() {if (m_data) free(m_data);}
};
void test() {MyString a;a = MyString("Hello");std::vector<MyString> vec;vec.push_back(MyString("World"));
}
int main()
{test();return 0;
}

实现了调用拷贝构造函数的操作和拷贝赋值操作符的操作。MyString(“Hello”) 和 MyString(“World”) 都 是临时对象,也就是右值。虽然它们是临时的,但程序仍然调用了拷贝构造和拷贝赋值,造成了没有意 义的资源申请和释放的操作。如果能够直接使用临时对象已经申请的资源,既能节省资源,有能节省资 源申请和释放的时间。这正是定义转移语义的目的。

用c++11的右值引用来定义这两个函数

// 用c++11的右值引用来定义这两个函数
MyString(MyString&& str) {std::cout << "Move Constructor is called! source: " << str.m_data <<std::endl;m_len = str.m_len;m_data = str.m_data; //避免了不必要的拷贝str.m_len = 0;str.m_data = NULL;
}
MyString& operator=(MyString&& str) {std::cout << "Move Assignment is called! source: " << str.m_data <<std::endl;if (this != &str) {m_len = str.m_len;m_data = str.m_data; //避免了不必要的拷贝str.m_len = 0;str.m_data = NULL;}return *this;
}

有了右值引用和转移语义,我们在设计和实现类时,对于需要动态申请大量资源的类,应该设计右值引 用的拷贝构造函数和赋值函数,以提高应用程序的效率。

移动(move )语义

我们知道移动语义是通过右值引用来匹配临时值的,那么,普通的左值是否也能借组移动语义来优化性 能呢?C++11为了解决这个问题,提供了std::move()方法来将左值转换为右值,从而方便应用移动语 义。move是将对象的状态或者所有权从一个对象转移到另一个对象,只是转义,没有内存拷贝。

//2-2-move1
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <string.h>
using namespace std;
class MyString {private:char* m_data;size_t m_len;void copy_data(const char *s) {m_data = new char[m_len+1];memcpy(m_data, s, m_len);m_data[m_len] = '\0';}public:MyString() {m_data = NULL;m_len = 0;}MyString(const char* p) {m_len = strlen (p);copy_data(p);}MyString(const MyString& str) {m_len = str.m_len;copy_data(str.m_data);std::cout << "Copy Constructor is called! source: " << str.m_data <<std::endl;}MyString& operator=(const MyString& str) {if (this != &str) {m_len = str.m_len;copy_data(str.m_data);}std::cout << "Copy Assignment is called! source: " << str.m_data <<std::endl;return *this;}// 用c++11的右值引用来定义这两个函数MyString(MyString&& str) {std::cout << "Move Constructor is called! source: " << str.m_data <<std::endl;m_len = str.m_len;m_data = str.m_data; //避免了不必要的拷贝str.m_len = 0;str.m_data = NULL;}MyString& operator=(MyString&& str) {std::cout << "Move Assignment is called! source: " << str.m_data <<std::endl;if (this != &str) {m_len = str.m_len;m_data = str.m_data; //避免了不必要的拷贝str.m_len = 0;str.m_data = NULL;}return *this;}virtual ~MyString() {if (m_data) free(m_data);}
};
int main()
{MyString a;a = MyString("Hello"); // moveMyString b = a; // copyMyString c = std::move(a); // move, 将左值转为右值return 0;
}

forward 完美转发

forward 完美转发实现了参数在传递过程中保持其值属性的功能,即若是左值,则传递之后仍然是左 值,若是右值,则传递之后仍然是右值。

现存在一个函数

Template<class T>
void func(T &&val);

根据前面所描述的,这种引用类型既可以对左值引用,亦可以对右值引用。 但要注意,引用以后,这个val值它本质上是一个左值! 看下面例子

int &&a = 10;
int &&b = a; //错误

注意这里,a是一个右值引用,但其本身a也有内存名字,所以a本身是一个左值,再用右值引用引用a这 是不对的。

因此我们有了std::forward()完美转发,这种T &&val中的val是左值,但如果我们用std::forward (val), 就会按照参数原来的类型转发;

int &&a = 10;
int &&b = std::forward<int>(a);

这样是正确的! 通过范例巩固下知识:

//2-4-forward
#include <iostream>
using namespace std;
template <class T>void Print(T &t)
{cout << "L" << t << endl;
}
template <class T>void Print(T &&t)
{cout << "R" << t << endl;
}
template <class T>void func(T &&t)
{Print(t);Print(std::move(t));Print(std::forward<T>(t));
}
int main()
{cout << "-- func(1)" << endl;func(1);int x = 10;int y = 20;cout << "-- func(x)" << endl;func(x); // x本身是左值cout << "-- func(std::forward<int>(y))" << endl;func(std::forward<int>(y)); //return 0;
}
/*
-- func(1)
L1
R1
R1
-- func(x)
L10
R10
L10 按照原来的属性转发
-- func(std::forward(y))
L20
R20
R20
*/

解释: func(1) :由于1是右值,所以未定的引用类型T&&v被一个右值初始化后变成了一个右值引用,但是在 func()函数体内部,调用PrintT(v) 时,v又变成了一个左值(因为在std::forward里它已经变成了一个具 名的变量,所以它是一个左值),因此,示例测试结果第一个PrintT被调用,打印出“L1" 调用PrintT(std::forward(v))时,由于std::forward会按参数原来的类型转发,因此,它还是一个右值 (这里已经发生了类型推导,所以这里的T&&不是一个未定的引用类型,会调用void PrintT(T&&t)函 数打印 “R1”.调用PrintT(std::move(v))是将v变成一个右值(v本身也是右值),因此,它将输出”R1" func(x)未定的引用类型T&&v被一个左值初始化后变成了一个左值引用,因此,在调用 PrintT(std::forward(v))时它会被转发到void PrintT(T&t).

forward将左值转换为右值:

MyString str1 = "hello";
MyString str2(str1);
MyString str3 = Fun();
MyString str4 = move(str2);
MyString str5(forward<MyString>(str3));

综合示例

#include "stdio.h"
#include <iostream>
#include<vector>
using namespace std;
class A
{public:A() :m_ptr(NULL), m_nSize(0){}A(int *ptr, int nSize){m_nSize = nSize;m_ptr = new int[nSize];if (m_ptr){memcpy(m_ptr, ptr, sizeof(sizeof(int) * nSize));}}A(const A& other) // 拷贝构造函数实现深拷贝{m_nSize = other.m_nSize;if (other.m_ptr){delete[] m_ptr;m_ptr = new int[m_nSize];memcpy(m_ptr, other.m_ptr, sizeof(sizeof(int)* m_nSize));}else{m_ptr = NULL;}cout << "A(const int &i)" << endl;}// 右值应用构造函数A(A &&other){m_ptr = NULL;m_nSize = other.m_nSize;if (other.m_ptr){m_ptr = move(other.m_ptr); // 移动语义other.m_ptr = NULL;}}~A(){if (m_ptr){delete[] m_ptr;m_ptr = NULL;}}void deleteptr(){if (m_ptr){delete[] m_ptr;m_ptr = NULL;}}int *m_ptr;int m_nSize;
};
void main()
{int arr[] = { 1, 2, 3 };A a(arr, sizeof(arr)/sizeof(arr[0]));cout << "m_ptr in a Addr: 0x" << a.m_ptr << endl;A b(a);cout << "m_ptr in b Addr: 0x" << b.m_ptr << endl;b.deleteptr();A c(std::forward<A>(a)); // 完美转换cout << "m_ptr in c Addr: 0x" << c.m_ptr << endl;c.deleteptr();vector<int> vect{ 1, 2, 3, 4, 5 };cout << "before move vect size: " << vect.size() << endl;vector<int> vect1 = move(vect);cout << "after move vect size: " << vect.size() << endl;cout << "new vect1 size: " << vect1.size() << endl;
}

emplace_back 减少内存拷贝和移动

对于STL容器,C++11后引入了emplace_back接口。 emplace_back是就地构造,不用构造后再次复制到容器中。因此效率更高。 考虑这样的语句:

vector<string> testVec;
testVec.push_back(string(16, 'a'));

上述语句足够简单易懂,将一个string对象添加到testVec中。底层实现:

  • 首先,string(16, ‘a’)会创建一个string类型的临时对象,这涉及到一次string构造过程。
  • 其次,vector内会创建一个新的string对象,这是第二次构造。
  • 最后在push_back结束时,最开始的临时对象会被析构。加在一起,这两行代码会涉及到两次 string构造和一次析构。

c++11可以用emplace_back代替push_back,emplace_back可以直接在vector中构建一个对象,而非 创建一个临时对象,再放进vector,再销毁。emplace_back可以省略一次构建和一次析构,从而达到优 化的目的.

//time_interval.h
#ifndef TIME_INTERVAL_H
#define TIME_INTERVAL_H
#include <iostream>
#include <memory>
#include <string>
#ifdef GCC
#include <sys/time.h>
#else
#include <ctime>
#endif // GCC
class TimeInterval
{public:TimeInterval(const std::string& d) : detail(d){init();}TimeInterval(){init();}~TimeInterval(){#ifdef GCCgettimeofday(&end, NULL);std::cout << detail<< 1000 * (end.tv_sec - start.tv_sec) + (end.tv_usec -start.tv_usec) / 1000<< " ms" << endl;#elseend = clock();std::cout << detail<< (double)(end - start) << " ms" << std::endl;#endif // GCC}protected:void init() {#ifdef GCCgettimeofday(&start, NULL);#elsestart = clock();#endif // GCC}private:std::string detail;#ifdef GCCtimeval start, end;#elseclock_t start, end;#endif // GCC
};
#define TIME_INTERVAL_SCOPE(d) std::shared_ptr<TimeInterval>
time_interval_scope_begin = std::make_shared<TimeInterval>(d)#endif // TIME_INTERVAL_H
//2-5-emplace_back
#include <vector>
#include <string>
#include "time_interval.h"
int main() {std::vector<std::string> v;int count = 10000000;v.reserve(count); //预分配十万大小,排除掉分配内存的时间{TIME_INTERVAL_SCOPE("push_back string:");for (int i = 0; i < count; i++){std::string temp("ceshi");v.push_back(temp);// push_back(const string&),参数是左值引用}}v.clear();{TIME_INTERVAL_SCOPE("push_back move(string):");for (int i = 0; i < count; i++){std::string temp("ceshi");v.push_back(std::move(temp));// push_back(string &&), 参数是右值引用}}v.clear();{TIME_INTERVAL_SCOPE("push_back(string):");for (int i = 0; i < count; i++){v.push_back(std::string("ceshi"));// push_back(string &&), 参数是右值引用}}v.clear();{TIME_INTERVAL_SCOPE("push_back(c string):");for (int i = 0; i < count; i++){v.push_back("ceshi");// push_back(string &&), 参数是右值引用}}v.clear();{TIME_INTERVAL_SCOPE("emplace_back(c string):");for (int i = 0; i < count; i++){v.emplace_back("ceshi");// 只有一次构造函数,不调用拷贝构造函数,速度最快}}
}
/*
push_back string:335 ms
push_back move(string):307 ms
push_back(string):285 ms
push_back(c string):295 ms
emplace_back(c string):234 ms
*/

第1中方法耗时最长,原因显而易见,将调用左值引用的push_back,且将会调用一次string的拷贝构造 函数,比较耗时,这里的string还算很短的,如果很长的话,差异会更大

第2、3、4中方法耗时基本一样,参数为右值,将调用右值引用的push_back,故调用string的移动构造 函数,移动构造函数耗时比拷贝构造函数少,因为不需要重新分配内存空间。

第5中方法耗时最少,因为emplace_back只调用构造函数,没有移动构造函数,也没有拷贝构造函数。 为了证实上述论断,我们自定义一个类,并在普通构造函数、拷贝构造函数、移动构造函数中打印相应 描述:

#include <vector>
#include <string>
#include "time_interval.h"
using namespace std;
class Foo {public:Foo(std::string str) : name(str) {std::cout << "constructor" << std::endl;}Foo(const Foo& f) : name(f.name) {std::cout << "copy constructor" << std::endl;}Foo(Foo&& f) : name(std::move(f.name)){std::cout << "move constructor" << std::endl;}private:std::string name;
};
int main() {std::vector<Foo> v;int count = 10000000;v.reserve(count); //预分配十万大小,排除掉分配内存的时间{TIME_INTERVAL_SCOPE("push_back T:");Foo temp("test");v.push_back(temp);// push_back(const T&),参数是左值引用//打印结果://constructor//copy constructor}cout << " ---------------------\n" << endl;v.clear();{TIME_INTERVAL_SCOPE("push_back move(T):");Foo temp("test");v.push_back(std::move(temp));// push_back(T &&), 参数是右值引用//打印结果://constructor//move constructor}cout << " ---------------------\n" << endl;v.clear();{TIME_INTERVAL_SCOPE("push_back(T&&):");v.push_back(Foo("test"));// push_back(T &&), 参数是右值引用//打印结果://constructor//move constructor}cout << " ---------------------\n" << endl;v.clear();{std::string temp = "test";TIME_INTERVAL_SCOPE("push_back(string):");v.push_back(temp);// push_back(T &&), 参数是右值引用//打印结果://constructor//move constructor}cout << " ---------------------\n" << endl;v.clear();{std::string temp = "test";TIME_INTERVAL_SCOPE("emplace_back(string):");v.emplace_back(temp);// 只有一次构造函数,不调用拷贝构造函数,速度最快//打印结果://constructor}
}
/*
constructor
copy constructor
push_back T:2 ms
constructor
move constructor
push_back move(T):0 ms
constructor
move constructor
push_back(T&&):0 ms
constructor
move constructor
push_back(string):0 ms
constructor
emplace_back(string):0 ms
*/

unordered container 无序容器

C++11 增加了无序容器 unordered_map/unordered_multimap 和 unordered_set/unordered_multiset,由于这些容器中的元素是不排序的,因此,比有序容器 map/multimap 和 set/multiset 效率更高。 map 和 set 内部是红黑树,在插入元素时会自动排序,而 无序容器内部是散列表( Hash Table),通过哈希( Hash),而不是排序来快速操作元素,使得效率 更高。由于无序容器内部是散列表,因此无序容器的 key 需要提供 hash_value 函数,其他用法和 map/set 的用法是一样的。不过对于自定义的 key,需要提供 Hash 函数和比较函数。

map和unordered_map的差别

需要引入的头文件不同

  • map: #include < map >

  • unordered_map: #include < unordered_map >

内部实现机理不同

  • map: map内部实现了一个红黑树(红黑树是非严格平衡二叉搜索树,而AVL是严格平衡二叉搜 索树),红黑树具有自动排序的功能,因此map内部的所有元素都是有序的,红黑树的每一个节点 都代表着map的一个元素。因此,对于map进行的查找,删除,添加等一系列的操作都相当于是对 红黑树进行的操作。map中的元素是按照二叉搜索树(又名二叉查找树、二叉排序树,特点就是左 子树上所有节点的键值都小于根节点的键值,右子树所有节点的键值都大于根节点的键值)存储 的,使用中序遍历可将键值按照从小到大遍历出来。
  • unordered_map: unordered_map内部实现了一个哈希表(也叫散列表,通过把关键码值映射到 Hash表中一个位置来访问记录,查找的时间复杂度可达到O(1),其在海量数据处理中有着广泛应 用)。因此,其元素的排列顺序是无序的。

优缺点以及适用处

map:

  1. 优点: 有序性,这是map结构最大的优点,其元素的有序性在很多应用中都会简化很多的操作 红黑树,内部实现一个红黑书使得map的很多操作在lgn的时间复杂度下就可以实现,因此效率非 常的高
  2. 缺点:

空间占用率高,因为map内部实现了红黑树,虽然提高了运行效率,但是因为每一个节点都需要额 外保存父节点、孩子节点和红/黑性质,使得每一个节点都占用大量的空间

  1. 适用处: 对于那些有顺序要求的问题,用map会更高效一些

unordered_map:

  1. 优点: 因为内部实现了哈希表,因此其查找速度非常的快
  2. 缺点: 哈希表的建立比较耗费时间
  3. 适用处:对于查找问题,unordered_map会更加高效一些,因此遇到查找问题,常会考虑一下用 unordered_map

总结

  1. 内存占有率的问题就转化成红黑树 VS hash表 , 还是unorder_map占用的内存要高。
  2. 但是unordered_map执行效率要比map高很多
  3. 对于unordered_map或unordered_set容器,其遍历顺序与创建该容器时输入的顺序不一定相 同,因为遍历是按照哈希表从前往后依次遍历的

小结

C++11 在性能上做了很大的改进,最大程度减少了内存移动和复制,通过右值引用、 forward、 emplace 和一些无序容器我们可以大幅度改进程序性能。

  • 右值引用仅仅是通过改变资源的所有者来避免内存的拷贝,能大幅度提高性能。
  • forward 能根据参数的实际类型转发给正确的函数。
  • emplace 系列函数通过直接构造对象的方式避免了内存的拷贝和移动。
    ),其在海量数据处理中有着广泛应 用)。因此,其元素的排列顺序是无序的。

优缺点以及适用处

map:

  1. 优点: 有序性,这是map结构最大的优点,其元素的有序性在很多应用中都会简化很多的操作 红黑树,内部实现一个红黑书使得map的很多操作在lgn的时间复杂度下就可以实现,因此效率非 常的高
  2. 缺点:

空间占用率高,因为map内部实现了红黑树,虽然提高了运行效率,但是因为每一个节点都需要额 外保存父节点、孩子节点和红/黑性质,使得每一个节点都占用大量的空间

  1. 适用处: 对于那些有顺序要求的问题,用map会更高效一些

unordered_map:

  1. 优点: 因为内部实现了哈希表,因此其查找速度非常的快
  2. 缺点: 哈希表的建立比较耗费时间
  3. 适用处:对于查找问题,unordered_map会更加高效一些,因此遇到查找问题,常会考虑一下用 unordered_map

总结

  1. 内存占有率的问题就转化成红黑树 VS hash表 , 还是unorder_map占用的内存要高。
  2. 但是unordered_map执行效率要比map高很多
  3. 对于unordered_map或unordered_set容器,其遍历顺序与创建该容器时输入的顺序不一定相 同,因为遍历是按照哈希表从前往后依次遍历的

小结

C++11 在性能上做了很大的改进,最大程度减少了内存移动和复制,通过右值引用、 forward、 emplace 和一些无序容器我们可以大幅度改进程序性能。

  • 右值引用仅仅是通过改变资源的所有者来避免内存的拷贝,能大幅度提高性能。
  • forward 能根据参数的实际类型转发给正确的函数。
  • emplace 系列函数通过直接构造对象的方式避免了内存的拷贝和移动。
  • 无序容器在插入元素时不排序,提高了插入效率,不过对于自定义 key 时需要提供 hash 函数和比 较函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/618697.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

哈希表的实现(1)----除留余数法实现

一&#xff0c;哈希表的介绍 哈希表是一种通过哈希思想实现的一种数据结构。哈希表这种数据结构的特点便是可以通过一个值快速的定位这个值所在的位置实现插入&#xff0c;删除&#xff0c;查找。在这篇博客里面&#xff0c;我们便来实现一个通过除留余数法实现的一个哈希表。 …

IntersectionObserver

IntersectionObserver 这个API主要实现图片懒加载、加载更多等等。 该API作用是观察两个元素之间有没有交叉&#xff0c;有没有重叠 现在要做的是当图片跟视口有交叉的情况下&#xff0c;把data-src的图片路径替换给src属性 //第一个参数是 回调&#xff0c;第二个参数的 配置…

HarmonyOS4.0 系列——06、渲染之条件渲染、循环渲染以及懒加载渲染

HarmonyOS4.0 系列——06、渲染之条件渲染、循环渲染以及懒加载渲染 if/else&#xff1a;条件渲染 ArkTS 提供了渲染控制的能力。条件渲染可根据应用的不同状态&#xff0c;使用 if、else 和 else if 渲染对应状态下的 UI 内容。 写法和 TS 的一样&#xff0c;简单看一下即可…

【数据结构之树和二叉树】

数据结构学习笔记---007 数据结构之树和二叉树概念篇1、树的概念和结构1.1、树的相关概念1.2、树的存储结构 2、二叉树概念及结构2.1、二叉树概念2.2、满二叉树2.3、完全二叉树2.4、满二叉树或完全二叉树的存储形式 3、堆的概念及结构3.1、堆的性质3.2、堆的意义 4、二叉树的存…

python_selenium_安装基础学习

目录 1.为什么使用selenium 2.安装selenium 2.1Chrome浏览器 2.2驱动 2.3下载selenium 2.4测试连接 3.selenium元素定位 3.1根据id来找到对象 3.2根据标签属性的属性值来获取对象 3.3根据xpath语句来获取对象 3.4根据标签的名字获取对象 3.5使用bs4的语法来获取对象…

解惑:测试圈网红工具 Jmeter 到底难在哪里

作为一名测试人员&#xff0c;你是否也曾经遇到过这些问题&#xff1a; 同样的起点&#xff0c;同样的工作时间&#xff0c;为什么别人接那么多项目&#xff0c;你还是在点点点&#xff1b;为什么别人升职了&#xff0c;而你还在原地踏步&#xff1f; 同样的工作内容&#xf…

数据库的数据类型

文章目录 前言一、数据类型数据类型分类数值类型bit类型小数类型floatdecimal 字符串类型charvarcharchar和varchar比较 日期和时间类型enum和set 前言 一、数据类型 数据类型分类 数值类型 下面我们来创建一个表&#xff0c;表中创建一个tinyint类型的数据。当我们不指定tiny…

【贪心】重构字符串

/*** 思路&#xff1a;如果s长度小于2&#xff0c;直接返回s&#xff0c;假设字符串s的长度为n。* n为偶数&#xff0c;如果字符串中的某个字符数量超过 n/2 则肯定会存在相邻的字符。* n为奇数&#xff0c;如果字符串中的某个字符的数量超过 &#xff08;n1&am…

机器学习顶会ICML 2024今日开放投稿,CCF A类,中稿率27.94%(附ICML23杰出论文+18篇高分论文)

ICML 2024今天开放投稿了&#xff01;距离截稿还有24天&#xff0c;想冲ICML的同学速度&#xff01; ICML 全称 International Conference on Machine Learning&#xff0c;由国际机器学习学会&#xff08;IMLS&#xff09;举办&#xff0c;与NIPS一同被认为是人工智能、机器学…

debian 11 arm64 aarch64 D2000 平台编译 box86 box64 笔记

参考资料 https://github.com/ptitSeb/box86/blob/master/docs/COMPILE.md 源码地址 GitHub - ptitSeb/box86: Box86 - Linux Userspace x86 Emulator with a twist, targeted at ARM Linux devices deb在线源地址&#xff08;打不开&#xff09;&#xff1a; Itais box86…

腾讯云免费服务器怎么申请?腾讯云免费服务器申请难吗?

腾讯云免费服务器申请入口 https://curl.qcloud.com/FJhqoVDP 免费服务器可选轻量应用服务器和云服务器CVM&#xff0c;轻量配置可选2核2G3M、2核8G7M和4核8G12M&#xff0c;CVM云服务器可选2核2G3M和2核4G3M配置&#xff0c;腾讯云服务器网txyfwq.com分享2024年最新腾讯云免费…

一文解析低代码平台

一、低代码概念 低代码开发平台是一种无需编码或者只需要少量代码即可快速生成应用程序的开发平台&#xff0c;通过可视化进行应用程序开发的方法&#xff0c;让不同经验水平的开发人员可以通过图形化的用户界面&#xff0c;使用拖拽组件和模型驱动的逻辑来创建网页和移动应用程…

MySQL夯实之路-存储引擎深入浅出

innoDB Mysql4.1以后的版本将表的数据和索引放在单独的文件中 采用mvcc来支持高并发&#xff0c;实现了四个标准的隔离级别&#xff0c;默认为可重复读&#xff0c;并且通过间隙锁&#xff08;next-key locking&#xff09;策略防止幻读&#xff08;查询的行中的间隙也会锁定…

Redis:原理速成+项目实战——Redis实战13(GEO实现附近商铺、滚动分页查询)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;Redis&#xff1a;原理速成项目实战——Redis实战12&#xff08;好友关注、Feed流&#xff08;关注推送&#xff09;、滚动分页查…

基于ssm的校园预点餐系统(有报告)。Javaee项目。ssm项目。

演示视频&#xff1a; 基于ssm的校园预点餐系统&#xff08;有报告&#xff09;。Javaee项目。ssm项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring Sp…

大语言模型向量数据库

大语言模型&向量数据库 LARGE LANGUAGE MODELSA. Vector Database & LLM WorkflowB. Vector Database for LLMC. Potential Applications for Vector Database on LLMD. Potential Applications for LLM on Vector DatabaseE. Retrieval-Based LLMF. Synergized Exampl…

element+vue 之图片放大器

1.安装插件 npm install vue-photo-zoom-pro2.main.js导入 // 放大镜 import VuePhotoZoomPro from vue-photo-zoom-pro Vue.use(VuePhotoZoomPro)3.页面使用 <vue-photo-zoom-pro:url"imgUrl":out-zoomer"true":scale"2"style"width:…

Leetcode202快乐数(java实现)

今天分享的题目是快乐数&#xff1a; 快乐数的定义如下&#xff1a; 快乐数&#xff08;Happy Number&#xff09;是指一个正整数&#xff0c;将其替换为各个位上数字的平方和&#xff0c;重复这个过程直到最后得到的结果为1&#xff0c;或者无限循环但不包含1。如果最终结果为…

使用ElementUI的el-tab+vxe-table表格+复选框选择

效果&#xff1a; 功能&#xff1a;首先进来是全部清空的状态的 点击左边选择不同项右边会实时发送接口获取数据填充表格 复选的内容可以保留显示&#xff0c;比如A的1勾选后切换到B再切换回来A的1仍然是勾选状态 说实话官网的setCheckboxRow方法我实现不了&#xff0c;这里…

2024年华夏银行总行社会招聘公告

信息科技部自动化测试与开发类岗  工作地点&#xff1a;北京市 学历要求&#xff1a;本科及以上 工作职责 1、持续推进自动化测试的开展&#xff0c;提升自动化测试覆盖率,包括方案设计、测试分析、测试执行和总结等。 2、负责自动化测试工具和框架搭建&#xff0c;根据…