[开发语言][c++][python]:C++与Python中的赋值、浅拷贝与深拷贝

C++与Python中的赋值、浅拷贝与深拷贝

    • 1. Python中的赋值、浅拷贝、深拷贝
    • 2. C++中的赋值、浅拷贝、深拷贝
      • 2.1 概念
      • 2.2 示例:从例子中理解
        • 1) 不可变对象的赋值、深拷贝、浅拷贝
        • 2) 可变对象的赋值、浅拷贝与深拷贝
        • 3) **可变对象深浅拷贝(外层、内层改变元素)**

写在前面:Python和C++中的赋值与深浅拷贝,由于其各自语言特性的问题,在概念和实现上稍微有点差异,本文将这C++和Python中的拷贝与赋值放到一起,希望通过对比学习两语言实现上的异同点,加深对概念的理解。

1. Python中的赋值、浅拷贝、深拷贝

C++中所谓的 浅拷贝就是由(系统默认的)拷贝构造函数对数据成员进行逐一的赋值 ,通常默认的拷贝构造函数就是可以达到该效果的,但是如果类中有指针类型的数据(需要在堆上分配内存),那么此时使用默认的拷贝构造函数就会带来错误。因为此时采用简单的浅拷贝,则两个类中的两个指针将指向同一个地址,当对象释放时,会调用两次析构函数,而导致指针悬挂现象(悬浮指针)

而C++的 深拷贝则是,使用自定义的拷贝构造函数,将原有对象的所有成员变量拷贝给新对象,对于指针等数据还会为新对象重新在堆上分配一块内存,并将原有对象所持有的堆上的数据也拷贝过来,这样能保证原有对象和新对象所持有的动态内存都是相互独立的,更改一个对象的数据不会影响另一个对象,同时也不会造成double free的错误。

C++中的 赋值,默认调用的是默认的拷贝构造函数即浅拷贝,如果要使用深拷贝需要重载赋值运算符,为动态内存在堆上分配空间即可~

C++ 浅拷贝示例:

  #include <iostream>// 浅拷贝 使用默认的构造函数class shallowCopy {public:shallowCopy(int len) : m_len(len) {m_ptr = new int(0); // m_ptr指向一个值为0的int}shallowCopy() {}~shallowCopy() {delete m_ptr;}public: // 定义为public,方便输出int* m_ptr;int m_len;};int main()
{shallowCopy sc(1);auto sc1 = sc; // 浅拷贝std::cout << "shallowCopy: " << std::endl;std::cout << "sc.m_ptr = " << sc.m_ptr << std::endl;std::cout << "sc1.m_ptr = " << sc1.m_ptr << std::endl;  
}>>>shallowCopy: 
sc.m_ptr = 0x560c930aeeb0
sc1.m_ptr = 0x560c930aeeb0
free(): double free detected in tcache 2  // 尝试两次释放同一地址!!!报错
Aborted

C++ 深拷贝示例:

#include <iostream>class deepCopy {public:deepCopy(int len) : m_len(len) {std::cout << "call deepCopy(int len) " << std::endl;m_ptr = new int(1);}deepCopy(const deepCopy& deepcopy) {std::cout << "call deepCopy(const deepCopy& deepcopy) " << std::endl;m_len = deepcopy.m_len;m_ptr = new int(*(deepcopy.m_ptr)); // 重新分配内存,并且赋值} // 拷贝构造函数~deepCopy() {delete m_ptr;}public:int* m_ptr;int m_len;};int main()
{	std::cout << "deepCopy: " << std::endl;deepCopy dc(1);deepCopy dc1(dc); // 深拷贝std::cout << "dc.m_ptr = " << dc.m_ptr << std::endl;std::cout << "dc1.m_ptr = " << dc1.m_ptr << std::endl;    
}>>>deepCopy: 
call deepCopy(int len) 
call deepCopy(const deepCopy& deepcopy) 
dc.m_ptr = 0x560c930af2e0
dc1.m_ptr = 0x560c930af300

2. C++中的赋值、浅拷贝、深拷贝

在Python参数传递,“值传递”还是“引用传递“?一文中我们从Python中可变对象与不可变对象的角度理解了Python中的参数传递的方式,在赋值、深拷贝、浅拷贝中,我们同样从这个角度入手,理解Python中的深浅拷贝。对可变对象、不可变对象不是很清晰的同学,可以移步链接复习一下~。

  • 不可变对象:一旦创建就不可修改的对象,包括字符串、元组、数值类型

(该对象所指向的内存中的值不能被改变。当改变某个变量时候,由于其所指的值不能被改变,相当于把原来的值复制一份后再改变,这会开辟一个新的地址,变量再指向这个新的地址。)

  • 可变对象:可以修改的对象,包括列表、字典、集合

(该对象所指向的内存中的值可以被改变。变量(准确的说是引用)改变后,实际上是其所指的值直接发生改变,并没有发生复制行为,也没有开辟新的地址,通俗点说就是原地改变。)


2.1 概念

  1. 赋值,类似于C++中的引用(别名),只是复制了新对象的引用,不会开辟新的内存空间,Python中赋值的一般形式为a = 'nihao',内存中实现是:内存开辟空间存储字符串nihao,将a指向这块内存空间:

在这里插入图片描述

  1. 浅拷贝: 创建新对象,其内容是原对象的引用。

​ Python中的浅拷贝有三种形式: 切片操作,工厂函数,copy模块中的copy函数。

​ 如: lst = [1,2,[3,4]]

切片操作lst1 = lst[:] 或者 lst1 = [each for each in lst]

工厂函数:lst1 = list(lst)

copy函数:lst1 = copy.copy(lst)

​ 浅拷贝之所以称为浅拷贝,是因为它仅仅只拷贝了一层,拷贝了最外围的对象本身,内部的元素都只是拷贝了一个引用而已,如在lst中有一个嵌套的 list[3,4],如果我们修改了它,情况就不一样了。

​ 浅拷贝要分两种情况进行讨论:

​ 1)当浅拷贝的值是 不可变对象(字符串、元组、数值类型) 时和“赋值”的情况一样,对象的id值 (id()函数用于获取对象的内存地址) 与浅拷贝原来的id值相同。

​ 2)当浅拷贝的值是 可变对象(列表、字典、集合) 时会产生一个“不是那么独立的对象”存在。

​ 2.1) 拷贝的可变对象中无复杂子对象,原来值的改变并不会影响浅拷贝的值,同时浅拷贝的值改变也并不会影响原来的值。

​ 2.2) 拷贝的可变对象中有复杂子对象(例如列表中的一个子元素是一个列表),如果不改变其中复杂子对象,浅拷贝的值改变并不会影响原来的值。 但是改变原来的值中的复杂子对象的值会影响浅拷贝的值。

  1. 深拷贝:和浅拷贝对应,深拷贝拷贝了对象的所有元素,包括多层嵌套的元素。深拷贝出来的对象是一个全新的对象,不再与原来的对象有任何关联。

只有一种形式,copy模块中的deepcopy函数

2.2 示例:从例子中理解

1) 不可变对象的赋值、深拷贝、浅拷贝
import copy# 不可变对象,无法添加删除元素
a = (1, 2, 3)print("==========")
b = a
print(a, b)
print(id(a), id(b))print("=====shallow copy=====")
s = copy.copy(a)
print(a, s)
print(id(a), id(s))print("=====deep copy=====")
d = copy.deepcopy(a)
print(a, d)
print(id(a), id(d))>>>==========
((1, 2, 3), (1, 2, 3))
(4564433008, 4564433008)
=====shallow copy=====
((1, 2, 3), (1, 2, 3))
(4564433008, 4564433008)
=====deep copy=====
((1, 2, 3), (1, 2, 3))
(4564433008, 4564433008)
2) 可变对象的赋值、浅拷贝与深拷贝
import copya = [1, 2, 3]
print("==========")
b = a
b.append(4)
print(a, b)
print(id(a), id(b)) # 赋值仅是变量的别名,两变量拥有相同的内存地址,无论更改哪一个另一个都会更改a = [1, 2, 3]
print("=====shallow copy=====")
s = copy.copy(a)
print(a, s)
print(id(a), id(s))
a.append(4)
print("------append 4-------")
print(a, s)
print(id(a), id(s))a = [1, 2, 3]
print("=====deep copy=====")
d = copy.deepcopy(a)
print(a, d)
print(id(a), id(d))
print("------append 4-------")
a.append(4)
print(a, d)
print(id(a), id(d))>>>==========
([1, 2, 3, 4], [1, 2, 3, 4])
(4564157144, 4564157144)
=====shallow copy=====
([1, 2, 3], [1, 2, 3])
(4564158440, 4564158512)
------append 4-------
([1, 2, 3, 4], [1, 2, 3])
(4564158440, 4564158512)
=====deep copy=====
([1, 2, 3], [1, 2, 3])
(4564158368, 4564158440)
------append 4-------
([1, 2, 3, 4], [1, 2, 3])
(4564158368, 4564158440)
3) 可变对象深浅拷贝(外层、内层改变元素)

# 外层元素更改
import copy
l = [1, 2, 3, [4, 5]]l1 = l
l2 = copy.copy(l)
l3 = copy.deepcopy(l)
l.append(6) print(l)
print(l1)
print(l2)
print(l3)>>>[1, 2, 3, [4, 5], 6]
[1, 2, 3, [4, 5], 6]
[1, 2, 3, [4, 5]]
[1, 2, 3, [4, 5]]# 内层元素更改
import copy
l = [1,2,3,[4, 5]]l1 = l #赋值
l2 = copy.copy(l) #浅拷贝
l3 = copy.deepcopy(l) #深拷贝
l[3].append(6) print(l) 
print(l1)
print(l2)
print(l3)>>> [1, 2, 3, [4, 5, 6]] 
[1, 2, 3, [4, 5, 6]] 
[1, 2, 3, [4, 5, 6]] 
[1, 2, 3, [4, 5]]
  1. 外层添加元素时,浅拷贝不会随原列表变化而变化;内层添加元素时,浅拷贝才会变化。

  2. 无论原列表如何变化,深拷贝都保持不变。

  3. 赋值对象随着原列表一起变化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/617727.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

资源三角形

美国哈佛大学的研究小组提出了著名的资源三角形&#xff1a;没有物质&#xff0c;什么也不存在&#xff1b;没有能量&#xff0c;什么也不会发生&#xff1b;没有信息&#xff0c;任何事物都没有意义。物质、能量和信息是相互有区别的&#xff0c;是人类社会赖以生存、发展的三…

Nginx负载均衡以及常用的7层协议和4层协议的介绍

一、引言 明人不说暗话&#xff0c;下面来解析一下 Nginx 的负载均衡。需要有 Linux 和 Nginx 环境哈。 二、nginx负载均衡的作用 高并发&#xff1a;负载均衡通过算法调整负载&#xff0c;尽力均匀的分配应用集群中各节点的工作量&#xff0c;以此提高应用集群的并发处理能力…

Ftrans飞驰云联荣获“CSA 2023安全创新奖”

2023年12月21日&#xff0c;第七届云安全联盟大中华区大会在深圳成功举办。会上&#xff0c;CSA大中华区发布了多个研究成果并进行 CSA 2023年度颁奖仪式&#xff0c;Ftrans飞驰云联以其突出的技术创新能力和广泛的市场应用前景&#xff0c;荣获备受瞩目的“CSA 2023安全创新奖…

【算法与数据结构】62、LeetCode不同路径

文章目录 一、题目二、解法2.1 动态规划解法2.2 数论解法 三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 2.1 动态规划解法 思路分析&#xff1a;机器人只能向下或者向右移动&#xff0c;那么到达&a…

leetcode 2645. 构造有效字符串的最少插入数-python

题目&#xff1a; 给你一个字符串 word &#xff0c;你可以向其中任何位置插入 “a”、“b” 或 “c” 任意次&#xff0c;返回使 word 有效 需要插入的最少字母数。 如果字符串可以由 “abc” 串联多次得到&#xff0c;则认为该字符串 有效 。 解题方法 1.先判断字符串是否…

【剪枝】【广度优先】【深度优先】488祖玛游戏

作者推荐 【动态规划】458:可怜的小猪 涉及知识点 剪枝 广度优先 深度优先 488祖玛游戏 在这个祖玛游戏变体中&#xff0c;桌面上有 一排 彩球&#xff0c;每个球的颜色可能是&#xff1a;红色 ‘R’、黄色 ‘Y’、蓝色 ‘B’、绿色 ‘G’ 或白色 ‘W’ 。你的手中也有一些…

kubeadm安装kubernetes

基本环境配置 节点分为&#xff1a;master&#xff0c;node&#xff0c;masterlb(keepalived虚拟Ip&#xff0c;不占用机器) k8s-master01 16 k8s-node01 113 15 k8s-node02 115 进入之后直接选done done 上海 123456 设置静态ip 然后去虚拟机里面设置ens即可 查看命…

MFC为对话框资源添加类

VC6新建一个对话框类型的工程; 建立之后资源中默认有2个对话框,一个是主对话框,About这个是默认建立的关于版权信息的; 然后主对话框有对应的.h和.cpp文件;可以在其中进行编程; 默认建立的有一个 关于 对话框; 在资源中新插入一个对话框,IDD_DIALOG1是对话框ID; 新加…

国际版WPS Office 18.6.1

【应用名称】&#xff1a;WPS Office 【适用平台】&#xff1a;#Android 【软件标签】&#xff1a;#WPS 【应用版本】&#xff1a;18.6.1 【应用大小】&#xff1a;160MB 【软件说明】&#xff1a;软件日常更新。WPS Office是使用人数最多的移动办公软件。独有手机阅读模式…

LLM主流框架:Causal Decoder、Prefix Decoder和Encoder-Decoder

本文将介绍如下内容&#xff1a; transformer中的mask机制Causal DecoderPrefix DecoderEncoder Decoder总结 一、transformer中的mask机制 在Transformer模型中&#xff0c;mask机制是一种用于在self-attention中的技术&#xff0c;用以控制不同token之间的注意力交互。具体…

探索WPF控件内容模型的四大支柱

WPF 内容模型 WPF控件内容模型主要指派生于System.Windows.Controls.Control类的各种控件&#xff0c;有四个可包含任意内容的类。 下表列出了继承自 Control 的类。 ContentControl&#xff1a;用于包含一段任意类型的内容。但是只能包含一个子元素作为其“内容”。它可以包…

图像分割deeplab系列

DeepLab系列是谷歌团队提出的一系列语义分割算法。DeepLab v1于2014年推出&#xff0c;并在PASCAL VOC2012数据集上取得了分割任务第二名的成绩&#xff0c;随后2017到2018年又相继推出了DeepLab v2&#xff0c;DeepLab v3以及DeepLab v3。DeepLab v1的两个创新点是空洞卷积&am…

【Python】新鲜出炉的海洋捕食者算法Python版本

2020年发表的海洋捕食者算法《Marine Predators Algorithm: A nature-inspired metaheuristic》。 作者只在原论文中给出了MATLAB代码&#xff0c;网上也没有Python版本&#xff0c;我自己用Python重写了MATLAB代码。 """2020海洋捕食者算法 """…

spaceship

通过数字平台启动您的网站、想法和未来&#xff0c;该平台旨在提供和连接您所需的域、托管、电子邮件和 Web 工具&#xff0c;并让您完全掌控 如果需要购买可以开5347的卡&#xff0c;点击获取

小学信息科技Python课程第2课:坐标与画笔

一、turtle画布与坐标系 在同一平面互相垂直且有公共原点的两条数轴构成平面直角坐标系。在坐标系中&#xff0c;水平方向的轴都称为x轴&#xff0c;垂直方向的轴都称为y轴 它们相交于O点&#xff0c;在这一个点里&#xff0c;x轴的值为0&#xff0c;y轴的值也为0&#xff0c;所…

掌握 Vue 响应式系统,让数据驱动视图(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

什么是网络数据抓取?有什么好用的数据抓取工具?

一、什么是网络数据抓取 网络数据抓取&#xff08;Web Scraping&#xff09;是指采用技术手段从大量网页中提取结构化和非结构化信息&#xff0c;按照一定规则和筛选标准进行数据处理&#xff0c;并保存到结构化数据库中的过程。目前网络数据抓取采用的技术主要是对垂直搜索引…

DNS解析和它的三个实验

一、DNS介绍 DNS&#xff1a;domain name server 7层协议 名称解析协议 tcp /53 主从之间的同步 udp/53 名字解析 DNS作用&#xff1a;将域名转换成IP地址的协议 1.1DNS的两种实现方式 1.通过hosts文件&#xff08;优先级最高&#xff09; 分散的管理 linux /etc/hos…

QA面试题

1、质量保证(QA)是什么&#xff1f; QA代表质量保证。QA 是一组活动&#xff0c;旨在确保开发的软件满足 SRS 文档中提到的所有规范或要求。QA 遵循 PDCA 循环&#xff1a; 计划/Plan - 计划是质量保证的一个阶段&#xff0c;组织在此阶段确定构建高质量软件产品所需的过程。做…

日志审计系统Agent项目创建——读取日志文件(Linux版本)

紧接着上一篇的分享&#xff0c;继续做日志文件的读取&#xff0c;点击连接即可日志文件初始化https://blog.csdn.net/wjl990316fddwjl/article/details/135553238 1、将指针移动到文件末尾 //文件移动到结尾fseek(fp, 0, SEEK_END); 2、定义当前指针的位置 lastPosition ft…