【深度学习】实验05 构造神经网络示例

文章目录

  • 构造神经网络
    • 1. 导入相关库
    • 2. 定义一个层
    • 3. 构造数据集
    • 4. 定义基本模型
    • 5. 变量初始化
    • 6. 开始训练

构造神经网络

注明:该代码用来训练一个神经网络,网络拟合y = x^2-0.5+noise,该神经网络的结构是输入层为一个神经元,隐藏层为十个神经元,输出层为一个神经元

1. 导入相关库

# 导入相关库
import tensorflow as tf  # 用来构造神经网络
import numpy as np  # 用来构造数据结构和处理数据模块

2. 定义一个层

# 定义一个层
def add_layer(inputs, in_size, out_size, activation_function=None):# 定义一个层,其中inputs为输入,in_size为上一层神经元数,out_size为该层神经元数# activation_function为激励函数Weights = tf.Variable(tf.random_normal([in_size, out_size]))# 初始权重随机生成比较好,in_size,out_size为该权重维度biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)# 偏置Wx_plus_b = tf.matmul(inputs, Weights) + biases# matmul为矩阵里的函数相乘if activation_function is None:outputs = Wx_plus_b  # 如果激活函数为空,则不激活,保持数据else:outputs = activation_function(Wx_plus_b)# 如果激活函数不为空,则激活,并且返回激活后的值return outputs  # 返回激活后的值

3. 构造数据集

# 构造一些样本,用来训练神经网络
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
# 值为(-1,1)之间的数,有300个
noise = np.random.normal(0, 0.05, x_data.shape)
x_data

array([[-1. ],
[-0.99331104],
[-0.98662207],
[-0.97993311],
[-0.97324415],
[-0.96655518],
[-0.95986622],
[-0.95317726],
[-0.94648829],
[-0.93979933],
[-0.93311037],
[-0.9264214 ],
[-0.91973244],
[-0.91304348],
[-0.90635452],
[-0.89966555],
[-0.89297659],
[-0.88628763],
[-0.87959866],
[-0.8729097 ],
[-0.86622074],
[-0.85953177],
[-0.85284281],
[-0.84615385],
[-0.83946488],
[-0.83277592],
[-0.82608696],
[-0.81939799],
[-0.81270903],
[-0.80602007],
[-0.7993311 ],
[-0.79264214],
[-0.78595318],
[-0.77926421],
[-0.77257525],
[-0.76588629],
[-0.75919732],
[-0.75250836],
[-0.7458194 ],
[-0.73913043],
[-0.73244147],
[-0.72575251],
[-0.71906355],
[-0.71237458],
[-0.70568562],
[-0.69899666],
[-0.69230769],
[-0.68561873],
[-0.67892977],
[-0.6722408 ],
[-0.66555184],
[-0.65886288],
[-0.65217391],
[-0.64548495],
[-0.63879599],
[-0.63210702],
[-0.62541806],
[-0.6187291 ],
[-0.61204013],
[-0.60535117],
[-0.59866221],
[-0.59197324],
[-0.58528428],
[-0.57859532],
[-0.57190635],
[-0.56521739],
[-0.55852843],
[-0.55183946],
[-0.5451505 ],
[-0.53846154],
[-0.53177258],
[-0.52508361],
[-0.51839465],
[-0.51170569],
[-0.50501672],
[-0.49832776],
[-0.4916388 ],
[-0.48494983],
[-0.47826087],
[-0.47157191],
[-0.46488294],
[-0.45819398],
[-0.45150502],
[-0.44481605],
[-0.43812709],
[-0.43143813],
[-0.42474916],
[-0.4180602 ],
[-0.41137124],
[-0.40468227],
[-0.39799331],
[-0.39130435],
[-0.38461538],
[-0.37792642],
[-0.37123746],
[-0.36454849],
[-0.35785953],
[-0.35117057],
[-0.34448161],
[-0.33779264],
[-0.33110368],
[-0.32441472],
[-0.31772575],
[-0.31103679],
[-0.30434783],
[-0.29765886],
[-0.2909699 ],
[-0.28428094],
[-0.27759197],
[-0.27090301],
[-0.26421405],
[-0.25752508],
[-0.25083612],
[-0.24414716],
[-0.23745819],
[-0.23076923],
[-0.22408027],
[-0.2173913 ],
[-0.21070234],
[-0.20401338],
[-0.19732441],
[-0.19063545],
[-0.18394649],
[-0.17725753],
[-0.17056856],
[-0.1638796 ],
[-0.15719064],
[-0.15050167],
[-0.14381271],
[-0.13712375],
[-0.13043478],
[-0.12374582],
[-0.11705686],
[-0.11036789],
[-0.10367893],
[-0.09698997],
[-0.090301 ],
[-0.08361204],
[-0.07692308],
[-0.07023411],
[-0.06354515],
[-0.05685619],
[-0.05016722],
[-0.04347826],
[-0.0367893 ],
[-0.03010033],
[-0.02341137],
[-0.01672241],
[-0.01003344],
[-0.00334448],
[ 0.00334448],
[ 0.01003344],
[ 0.01672241],
[ 0.02341137],
[ 0.03010033],
[ 0.0367893 ],
[ 0.04347826],
[ 0.05016722],
[ 0.05685619],
[ 0.06354515],
[ 0.07023411],
[ 0.07692308],
[ 0.08361204],
[ 0.090301 ],
[ 0.09698997],
[ 0.10367893],
[ 0.11036789],
[ 0.11705686],
[ 0.12374582],
[ 0.13043478],
[ 0.13712375],
[ 0.14381271],
[ 0.15050167],
[ 0.15719064],
[ 0.1638796 ],
[ 0.17056856],
[ 0.17725753],
[ 0.18394649],
[ 0.19063545],
[ 0.19732441],
[ 0.20401338],
[ 0.21070234],
[ 0.2173913 ],
[ 0.22408027],
[ 0.23076923],
[ 0.23745819],
[ 0.24414716],
[ 0.25083612],
[ 0.25752508],
[ 0.26421405],
[ 0.27090301],
[ 0.27759197],
[ 0.28428094],
[ 0.2909699 ],
[ 0.29765886],
[ 0.30434783],
[ 0.31103679],
[ 0.31772575],
[ 0.32441472],
[ 0.33110368],
[ 0.33779264],
[ 0.34448161],
[ 0.35117057],
[ 0.35785953],
[ 0.36454849],
[ 0.37123746],
[ 0.37792642],
[ 0.38461538],
[ 0.39130435],
[ 0.39799331],
[ 0.40468227],
[ 0.41137124],
[ 0.4180602 ],
[ 0.42474916],
[ 0.43143813],
[ 0.43812709],
[ 0.44481605],
[ 0.45150502],
[ 0.45819398],
[ 0.46488294],
[ 0.47157191],
[ 0.47826087],
[ 0.48494983],
[ 0.4916388 ],
[ 0.49832776],
[ 0.50501672],
[ 0.51170569],
[ 0.51839465],
[ 0.52508361],
[ 0.53177258],
[ 0.53846154],
[ 0.5451505 ],
[ 0.55183946],
[ 0.55852843],
[ 0.56521739],
[ 0.57190635],
[ 0.57859532],
[ 0.58528428],
[ 0.59197324],
[ 0.59866221],
[ 0.60535117],
[ 0.61204013],
[ 0.6187291 ],
[ 0.62541806],
[ 0.63210702],
[ 0.63879599],
[ 0.64548495],
[ 0.65217391],
[ 0.65886288],
[ 0.66555184],
[ 0.6722408 ],
[ 0.67892977],
[ 0.68561873],
[ 0.69230769],
[ 0.69899666],
[ 0.70568562],
[ 0.71237458],
[ 0.71906355],
[ 0.72575251],
[ 0.73244147],
[ 0.73913043],
[ 0.7458194 ],
[ 0.75250836],
[ 0.75919732],
[ 0.76588629],
[ 0.77257525],
[ 0.77926421],
[ 0.78595318],
[ 0.79264214],
[ 0.7993311 ],
[ 0.80602007],
[ 0.81270903],
[ 0.81939799],
[ 0.82608696],
[ 0.83277592],
[ 0.83946488],
[ 0.84615385],
[ 0.85284281],
[ 0.85953177],
[ 0.86622074],
[ 0.8729097 ],
[ 0.87959866],
[ 0.88628763],
[ 0.89297659],
[ 0.89966555],
[ 0.90635452],
[ 0.91304348],
[ 0.91973244],
[ 0.9264214 ],
[ 0.93311037],
[ 0.93979933],
[ 0.94648829],
[ 0.95317726],
[ 0.95986622],
[ 0.96655518],
[ 0.97324415],
[ 0.97993311],
[ 0.98662207],
[ 0.99331104],
[ 1. ]])

# 加入噪声会更贴近真实情况,噪声的值为(0,0.05)之间,结构为x_data一样
y_data = np.square(x_data) - 0.5 + noise
# y的结构
y_data

array([[ 0.59535036],
[ 0.46017998],
[ 0.47144478],
[ 0.45083795],
[ 0.58438217],
[ 0.38570118],
[ 0.43550029],
[ 0.40597571],
[ 0.3357524 ],
[ 0.35784864],
[ 0.34530231],
[ 0.32509701],
[ 0.25554733],
[ 0.32300801],
[ 0.2299959 ],
[ 0.35472568],
[ 0.31227671],
[ 0.30385068],
[ 0.29413844],
[ 0.18437787],
[ 0.28132819],
[ 0.25605309],
[ 0.23126361],
[ 0.23492797],
[ 0.18381621],
[ 0.10392937],
[ 0.13415913],
[ 0.14043649],
[ 0.11756826],
[ 0.12142749],
[ 0.12400694],
[ 0.08926307],
[ 0.15581832],
[ 0.16541106],
[-0.02582895],
[ 0.05924725],
[-0.04037454],
[ 0.03799003],
[ 0.09030832],
[ 0.05984324],
[-0.06569464],
[ 0.07973773],
[ 0.04297837],
[ 0.05169557],
[-0.00096191],
[-0.02049573],
[-0.03125322],
[-0.04545588],
[-0.02168901],
[ 0.01657517],
[-0.04315181],
[-0.09123519],
[-0.03292835],
[-0.1110189 ],
[-0.08212792],
[-0.10089535],
[-0.17406672],
[-0.10380731],
[-0.10774072],
[-0.21283138],
[-0.09788435],
[-0.10196452],
[-0.16439081],
[-0.15431978],
[-0.17778307],
[-0.18428537],
[-0.17874028],
[-0.10490738],
[-0.25076832],
[-0.16078044],
[-0.21572183],
[-0.15624353],
[-0.19591988],
[-0.31560742],
[-0.29593726],
[-0.26686787],
[-0.2999804 ],
[-0.30631065],
[-0.35305224],
[-0.31295125],
[-0.22996255],
[-0.22837061],
[-0.27266253],
[-0.31290802],
[-0.37188479],
[-0.20765034],
[-0.33860431],
[-0.31135236],
[-0.25249981],
[-0.26041048],
[-0.31486205],
[-0.30253306],
[-0.41624795],
[-0.40053837],
[-0.29939676],
[-0.32615377],
[-0.37377787],
[-0.32222027],
[-0.3158838 ],
[-0.43880087],
[-0.37510637],
[-0.46702321],
[-0.27058091],
[-0.52885151],
[-0.4061462 ],
[-0.4486374 ],
[-0.37819628],
[-0.34701947],
[-0.32454364],
[-0.3901839 ],
[-0.43293107],
[-0.47881173],
[-0.45280819],
[-0.49676541],
[-0.48955669],
[-0.45898691],
[-0.37473462],
[-0.43801531],
[-0.44793655],
[-0.57343047],
[-0.45262969],
[-0.40719677],
[-0.45423461],
[-0.45053051],
[-0.51046881],
[-0.41584096],
[-0.53328545],
[-0.44766406],
[-0.50158463],
[-0.42676031],
[-0.50552613],
[-0.36832989],
[-0.48699296],
[-0.41614151],
[-0.6175621 ],
[-0.48304532],
[-0.46115021],
[-0.40948908],
[-0.42017024],
[-0.50411757],
[-0.44530626],
[-0.46895275],
[-0.52127771],
[-0.50064585],
[-0.42210169],
[-0.58582837],
[-0.52049198],
[-0.45332091],
[-0.53465815],
[-0.5385712 ],
[-0.5654201 ],
[-0.54471377],
[-0.48109194],
[-0.44565732],
[-0.48112022],
[-0.46471786],
[-0.5452149 ],
[-0.52115601],
[-0.50234928],
[-0.54885558],
[-0.5279981 ],
[-0.53893795],
[-0.44286416],
[-0.45371406],
[-0.44633111],
[-0.57535678],
[-0.62918947],
[-0.41877124],
[-0.56263956],
[-0.51201705],
[-0.35016007],
[-0.49188897],
[-0.55766056],
[-0.38963378],
[-0.5038024 ],
[-0.51949984],
[-0.45229896],
[-0.49193029],
[-0.53472883],
[-0.48957523],
[-0.35561181],
[-0.4622668 ],
[-0.39177781],
[-0.43448445],
[-0.49854629],
[-0.49843105],
[-0.47704375],
[-0.36618194],
[-0.45177012],
[-0.41497222],
[-0.42152064],
[-0.48996608],
[-0.43010878],
[-0.42599962],
[-0.2841197 ],
[-0.38992082],
[-0.43802592],
[-0.42448799],
[-0.29514676],
[-0.37154091],
[-0.25426219],
[-0.44610678],
[-0.37120566],
[-0.3531599 ],
[-0.34606119],
[-0.29637877],
[-0.3693284 ],
[-0.36651142],
[-0.30025118],
[-0.31443603],
[-0.40824064],
[-0.31734053],
[-0.40807378],
[-0.33792031],
[-0.22414921],
[-0.37707072],
[-0.26776417],
[-0.29152204],
[-0.34066934],
[-0.19037511],
[-0.23552614],
[-0.2144995 ],
[-0.27628531],
[-0.27329725],
[-0.23910513],
[-0.30009859],
[-0.30192088],
[-0.16403744],
[-0.32546893],
[-0.25686912],
[-0.12515146],
[-0.21483097],
[-0.12779443],
[-0.28748063],
[-0.23782354],
[-0.16024807],
[-0.19062672],
[-0.15066097],
[-0.19043274],
[-0.16583211],
[-0.11201314],
[-0.05612149],
[-0.00847256],
[-0.1429705 ],
[-0.09595988],
[-0.09583441],
[-0.01372838],
[-0.04818834],
[-0.11840653],
[ 0.02184166],
[-0.07153294],
[-0.11556547],
[-0.04731049],
[-0.10774914],
[-0.014642 ],
[-0.01470962],
[-0.03259555],
[-0.04194347],
[ 0.08987345],
[-0.02027899],
[ 0.02418433],
[ 0.04298611],
[ 0.04130101],
[ 0.18010436],
[ 0.15480307],
[ 0.02719993],
[ 0.11508363],
[ 0.04309794],
[ 0.14060578],
[ 0.09377926],
[ 0.13887198],
[ 0.16148276],
[ 0.11398259],
[ 0.27887578],
[ 0.22775177],
[ 0.20749998],
[ 0.22107721],
[ 0.20854961],
[ 0.25411644],
[ 0.26561906],
[ 0.27540788],
[ 0.26946028],
[ 0.2390275 ],
[ 0.26051795],
[ 0.34424064],
[ 0.3240088 ],
[ 0.38040554],
[ 0.35717078],
[ 0.31357911],
[ 0.43825368],
[ 0.35709739],
[ 0.48101049],
[ 0.36024364],
[ 0.43253108],
[ 0.39268334],
[ 0.41942572],
[ 0.41196584],
[ 0.54435941],
[ 0.49840622],
[ 0.51627957]])

4. 定义基本模型

# 定义placeholder用来输入数据到神经网络,其中1表只有一个特征,也就是维度为一维数据
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)# 代价函数,reduce_mean为求均值,reduce_sum为求和,reduction_indices为数据处理的维度
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))# 将代价函数传到梯度下降,学习速率为0.1,这里包含权重的训练,会更新权重
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

5. 变量初始化

# important step
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
# 变量初始化
if int((tf.__version__).split('.')[1]) < 12:init = tf.initialize_all_variables()
else:init = tf.global_variables_initializer()
sess = tf.Session()  # 打开TensorFlow
sess.run(init)  # 执行变量初始化

6. 开始训练

for i in range(1000):  # 梯度下降迭代一千次# trainingsess.run(train_step, feed_dict={xs: x_data, ys: y_data})# 执行梯度下降算法,并且将样本喂给损失函数if i % 50 == 0:# 每50次迭代输出代价函数的值print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
0.18214862
0.010138167
0.0071248626
0.0069830194
0.0068635535
0.0067452225
0.006626569
0.0065121166
0.0064035906
0.006295418
0.0061897114
0.0060903295
0.005990808
0.0058959606
0.0058057955
0.0057200184
0.005637601
0.0055605737
0.0054863705
0.005413457

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/61764.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高效利用隧道代理实现无阻塞数据采集

在当今信息时代&#xff0c;大量的有价值数据分散于各个网站和平台。然而&#xff0c;许多网站对爬虫程序进行限制或封禁&#xff0c;使得传统方式下的数据采集变得困难重重。本文将向您介绍如何通过使用隧道代理来解决这一问题&#xff0c;并帮助您成为一名高效、顺畅的数据采…

工厂人员作业行为动作识别检测算法

工厂人员作业行为动作识别检测算法通过yolov7python深度学习算法框架模型&#xff0c;工厂人员作业行为动作识别检测算法实时识别并分析现场人员操作动作行为是否符合SOP安全规范流程作业标准&#xff0c;如果不符合则立即抓拍告警提醒。Python是一种由Guido van Rossum开发的通…

【React】React学习:从初级到高级(一)

React学习[一] 1 UI描述1.1 组件的创建与使用1.1.1 创建组件1.1.2 使用组件 1.2 组件的导入与导出1.2.1 根组件文件1.2.2 导出和导入一个组件1.2.3 从同一文件中导出和导入多个组件 1.3 使用JSX书写标签语言1.3.1 JSX:将标签引入JavaScript1.3.2 将HTML转换为JSX1.3.3 高级提示…

Python进阶(1)

Python进阶&#xff08;1&#xff09; 文章目录 Python进阶&#xff08;1&#xff09;一&#xff1a;发送请求&#xff08;GET/POST&#xff09;1.1、方式一&#xff1a;http.client&#xff0c;以https方式为例1.1.1、GET1.1.2、POST 1.2、方式二&#xff1a;requests&#xf…

音视频 ffplay命令播放媒体

播放本地文件 ffplay -window_title "test time" -ss 2 -t 10 -autoexit test.mp4 ffplay buweishui.mp3播放网络流 ffplay -window_title "rtmp stream" rtmp://202.69.69.180:443/webcast/bshdlive-pc强制解码器 mpeg4解码器&#xff1a;ffplay -vco…

Mac安装Dart时,Homebrew报错 Error: Failure while executing

前言&#xff1a; 最近准备开发Flutter项目时&#xff0c;在安装环境时&#xff0c;安装Homebew时遇到了以下报错信息&#xff0c;在这里分享一下。 报错信息&#xff1a; ~ % brew tap dart-lang/dart > Tapping dart-lang/dart Cloning into /opt/homebrew/Library/Tap…

Java-集合框架-List,Set,Map,队列

文章目录 Java集合框架&#xff1a;List&#xff0c;Set&#xff0c;Map&#xff0c;队列Java集合框架是什么&#xff1f;如何使用&#xff1f;ListSetMap队列 什么场景使用&#xff1f;优缺点是什么&#xff1f;ListSetMap队列 Java示例List示例Set示例Map示例队列示例 对比 J…

BMC相关知识

简介 BMC&#xff08;Baseboard Management Controller&#xff09;&#xff0c;基板管理控制器&#xff0c;普通PC没有&#xff0c;服务器产品必备。BMC是一个独立的系统&#xff0c;只要通电即可运行&#xff0c;服务器无需开机&#xff0c;不依赖其它软硬件&#xff0c;如O…

Unity音频基础概念

一、音源与音频侦听器 游戏画面能够被观众看到&#xff0c;是因为有渲染器和摄像机&#xff0c;同样音频能够被听到&#xff0c;也要有声音的发出者与声音的接收者。声音的发出者叫做音源&#xff0c;接收者叫做音频侦听器。Audio Source与Audio Listener都是组件&#xff0c;…

webrtc 的Bundle group 和RTCP-MUX

1&#xff0c;最近调试程序的时候发现抱一个错误 max-bundle configured but session description has no BUNDLE group 最后发现是一个参数设置错误 config.bundle_policy webrtc::PeerConnectionInterface::BundlePolicy::kBundlePolicyMaxBundle; 2&#xff0c;rtcp-mu…

Linux之Shell(一)

Linux之Shell Shell概述Linux提供的Shell解析器bash和sh的关系Centos默认的解析器是bash Shell脚本入门脚本格式第一个脚本脚本常用的执行方式 变量系统预定义变量自定义变量特殊变量$n$#\$*、\$$? 运算符条件判断流程控制(▲)if判断case语句for循环while循环 read读取控制台输…

macos安装zsh

https://www.cnblogs.com/xuLessReigns/p/11005435.html mac下安装autojump brew install autojump 1&#xff0c;安装zsh&#xff0c;执行 sh -c "$(curl -fsSL https://raw.github.com/robbyrussell/oh-my-zsh/master/tools/install.sh)" 2&#xff0c;将zsh设置…

并发容器11

一 JDK 提供的并发容器总结 JDK 提供的这些容器大部分在 java.util.concurrent 包中。 ConcurrentHashMap: 线程安全的 HashMap CopyOnWriteArrayList: 线程安全的 List&#xff0c;在读多写少的场合性能非常好&#xff0c;远远好于 Vector. ConcurrentLinkedQueue: 高效的并…

设计模式入门笔记

1 设计模式简介 在IT这个行业&#xff0c;技术日新月异&#xff0c;可能你今年刚弄懂一个编程框架&#xff0c;明年它就不流行了。 然而即使在易变的IT世界也有很多几乎不变的知识&#xff0c;他们晦涩而重要&#xff0c;默默的将程序员划分为卓越与平庸两类。比如说&#xff…

unity 之参数类型之引用类型

文章目录 引用类型引用类型与值类型的差异 引用类型 在Unity中&#xff0c;引用类型是指那些在内存中存储对象引用的数据类型。以下是在Unity中常见的引用类型的介绍&#xff1a; 节点&#xff08;GameObject&#xff09;&#xff1a; 在Unity中&#xff0c;游戏对象&#xff…

无重叠区间【贪心算法】

无重叠区间 给定一个区间的集合 intervals &#xff0c;其中 intervals[i] [starti, endi] 。返回 需要移除区间的最小数量&#xff0c;使剩余区间互不重叠 。 class Solution {public int eraseOverlapIntervals(int[][] intervals) {//先排序&#xff0c;按照左边界升序,注…

【爬虫】实验项目一:文本反爬网站的分析和爬取

目录 一、实验目的 二、实验预习提示 ​编辑 三、实验内容 四、实验要求 五、实验过程 1. 基本要求&#xff1a; 2. 改进要求A 3. 改进要求B: 六、资料 1.实验框架代码&#xff1a; 2.OpenSSL&#xff1a;Win32/Win64 OpenSSL Installer for Windows - Shining Light…

Node与Express后端架构:高性能的Web应用服务

在现代Web应用开发中&#xff0c;后端架构的性能和可扩展性至关重要。Node.js作为一个基于事件驱动、非阻塞I/O的平台&#xff0c;以及Express作为一个流行的Node.js框架&#xff0c;共同构建了高性能的Web应用服务。 在本文中&#xff0c;我们将深入探讨Node与Express后端架构…

Windows笔记本电脑开机黑屏

Windows笔记本电脑开机黑屏 最近&#xff0c;我遇到了一件奇怪的事情。我的Windows笔记本电脑在开机时出现了一个黑屏&#xff0c;没有任何反应。我尝试了多种方法&#xff0c;包括重启和恢复出厂设置&#xff0c;但都无济于事。 我开始感到担心&#xff0c;因为这只会影响到…

污水厂数字孪生 | 3D可视化管理系统助力污水企业数字化管理

随着城市化进程的不断加快&#xff0c;污水处理成为了城市环境保护的重要组成部分。传统的污水处理方式往往存在诸多问题&#xff0c;如信息不对称、安全隐患等。为了解决这些问题&#xff0c;污水处理3D可视化管控平台应运而生&#xff0c;它通过结合数字孪生技术和远程指导技…