C++力扣题目106,105--中序和后序,前序和中序遍历构造二叉树

106.从中序与后序遍历序列构造二叉树

力扣题目链接(opens new window)

根据一棵树的中序遍历与后序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

  • 中序遍历 inorder = [9,3,15,20,7]
  • 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树:

106. 从中序与后序遍历序列构造二叉树1

思路

首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来再切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。

如果让我们肉眼看两个序列,画一棵二叉树的话,应该分分钟都可以画出来。

流程如图:

106.从中序与后序遍历序列构造二叉树

那么代码应该怎么写呢?

说到一层一层切割,就应该想到了递归。

来看一下一共分几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

不难写出如下代码:(先把框架写出来)

TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {// 第一步if (postorder.size() == 0) return NULL;// 第二步:后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 第三步:找切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 第四步:切割中序数组,得到 中序左数组和中序右数组// 第五步:切割后序数组,得到 后序左数组和后序右数组// 第六步root->left = traversal(中序左数组, 后序左数组);root->right = traversal(中序右数组, 后序右数组);return root;
}

难点大家应该发现了,就是如何切割,以及边界值找不好很容易乱套。

此时应该注意确定切割的标准,是左闭右开,还有左开右闭,还是左闭右闭,这个就是不变量,要在递归中保持这个不变量。

在切割的过程中会产生四个区间,把握不好不变量的话,一会左闭右开,一会左闭右闭,必然乱套!

我在数组:每次遇到二分法,都是一看就会,一写就废 (opens new window)和数组:这个循环可以转懵很多人! (opens new window)中都强调过循环不变量的重要性,在二分查找以及螺旋矩阵的求解中,坚持循环不变量非常重要,本题也是。

首先要切割中序数组,为什么先切割中序数组呢?

切割点在后序数组的最后一个元素,就是用这个元素来切割中序数组的,所以必要先切割中序数组。

中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割,如下代码中我坚持左闭右开的原则:

// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;
}// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

接下来就要切割后序数组了。

首先后序数组的最后一个元素指定不能要了,这是切割点 也是 当前二叉树中间节点的元素,已经用了。

后序数组的切割点怎么找?

后序数组没有明确的切割元素来进行左右切割,不像中序数组有明确的切割点,切割点左右分开就可以了。

此时有一个很重的点,就是中序数组大小一定是和后序数组的大小相同的(这是必然)。

中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。

代码如下:

// postorder 舍弃末尾元素,因为这个元素就是中间节点,已经用过了
postorder.resize(postorder.size() - 1);// 左闭右开,注意这里使用了左中序数组大小作为切割点:[0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

此时,中序数组切成了左中序数组和右中序数组,后序数组切割成左后序数组和右后序数组。

接下来可以递归了,代码如下:

root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);

完整代码如下:

class Solution {
private:TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {if (postorder.size() == 0) return NULL;// 后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 找到中序遍历的切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左闭右开区间:[0, delimiterIndex)vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);// [delimiterIndex + 1, end)vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );// postorder 舍弃末尾元素postorder.resize(postorder.size() - 1);// 切割后序数组// 依然左闭右开,注意这里使用了左中序数组大小作为切割点// [0, leftInorder.size)vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());// [leftInorder.size(), end)vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());root->left = traversal(leftInorder, leftPostorder);root->right = traversal(rightInorder, rightPostorder);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, postorder);}
};

相信大家自己就算是思路清晰, 代码写出来一定是各种问题,所以一定要加日志来调试,看看是不是按照自己思路来切割的,不要大脑模拟,那样越想越糊涂。

加了日志的代码如下:(加了日志的代码不要在leetcode上提交,容易超时)

class Solution {
private:TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {if (postorder.size() == 0) return NULL;int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);if (postorder.size() == 1) return root;int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );postorder.resize(postorder.size() - 1);vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());// 以下为日志cout << "----------" << endl;cout << "leftInorder :";for (int i : leftInorder) {cout << i << " ";}cout << endl;cout << "rightInorder :";for (int i : rightInorder) {cout << i << " ";}cout << endl;cout << "leftPostorder :";for (int i : leftPostorder) {cout << i << " ";}cout << endl;cout << "rightPostorder :";for (int i : rightPostorder) {cout << i << " ";}cout << endl;root->left = traversal(leftInorder, leftPostorder);root->right = traversal(rightInorder, rightPostorder);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, postorder);}
};


 

此时应该发现了,如上的代码性能并不好,因为每层递归定义了新的vector(就是数组),既耗时又耗空间,但上面的代码是最好理解的,为了方便读者理解,所以用如上的代码来讲解。

下面给出用下标索引写出的代码版本:(思路是一样的,只不过不用重复定义vector了,每次用下标索引来分割)

class Solution {
private:// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {if (postorderBegin == postorderEnd) return NULL;int rootValue = postorder[postorderEnd - 1];TreeNode* root = new TreeNode(rootValue);if (postorderEnd - postorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割后序数组// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)int leftPostorderBegin =  postorderBegin;int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;// 左闭右开的原则return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());}
};

那么这个版本写出来依然要打日志进行调试,打日志的版本如下:(该版本不要在leetcode上提交,容易超时

class Solution {
private:TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {if (postorderBegin == postorderEnd) return NULL;int rootValue = postorder[postorderEnd - 1];TreeNode* root = new TreeNode(rootValue);if (postorderEnd - postorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割后序数组// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)int leftPostorderBegin =  postorderBegin;int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了cout << "----------" << endl;cout << "leftInorder :";for (int i = leftInorderBegin; i < leftInorderEnd; i++) {cout << inorder[i] << " ";}cout << endl;cout << "rightInorder :";for (int i = rightInorderBegin; i < rightInorderEnd; i++) {cout << inorder[i] << " ";}cout << endl;cout << "leftpostorder :";for (int i = leftPostorderBegin; i < leftPostorderEnd; i++) {cout << postorder[i] << " ";}cout << endl;cout << "rightpostorder :";for (int i = rightPostorderBegin; i < rightPostorderEnd; i++) {cout << postorder[i] << " ";}cout << endl;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());}
};

给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

示例 1:

输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]

示例 2:

输入: preorder = [-1], inorder = [-1]
输出: [-1]

 

思路

本题和106是一样的道理。

我就直接给出代码了。

带日志的版本C++代码如下: (带日志的版本仅用于调试,不要在leetcode上提交,会超时

class Solution {
private:TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {if (preorderBegin == preorderEnd) return NULL;int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0TreeNode* root = new TreeNode(rootValue);if (preorderEnd - preorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割前序数组// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)int leftPreorderBegin =  preorderBegin + 1;int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);int rightPreorderEnd = preorderEnd;cout << "----------" << endl;cout << "leftInorder :";for (int i = leftInorderBegin; i < leftInorderEnd; i++) {cout << inorder[i] << " ";}cout << endl;cout << "rightInorder :";for (int i = rightInorderBegin; i < rightInorderEnd; i++) {cout << inorder[i] << " ";}cout << endl;cout << "leftPreorder :";for (int i = leftPreorderBegin; i < leftPreorderEnd; i++) {cout << preorder[i] << " ";}cout << endl;cout << "rightPreorder :";for (int i = rightPreorderBegin; i < rightPreorderEnd; i++) {cout << preorder[i] << " ";}cout << endl;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);return root;}public:TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {if (inorder.size() == 0 || preorder.size() == 0) return NULL;return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());}
};


 

105.从前序与中序遍历序列构造二叉树,最后版本,C++代码:

class Solution {
private:TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {if (preorderBegin == preorderEnd) return NULL;int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0TreeNode* root = new TreeNode(rootValue);if (preorderEnd - preorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割前序数组// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)int leftPreorderBegin =  preorderBegin + 1;int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);int rightPreorderEnd = preorderEnd;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);return root;}public:TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {if (inorder.size() == 0 || preorder.size() == 0) return NULL;// 参数坚持左闭右开的原则return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());}
};

#思考题

前序和中序可以唯一确定一棵二叉树。

后序和中序可以唯一确定一棵二叉树。

那么前序和后序可不可以唯一确定一棵二叉树呢?

前序和后序不能唯一确定一棵二叉树!,因为没有中序遍历无法确定左右部分,也就是无法分割。

举一个例子:

106.从中序与后序遍历序列构造二叉树2

tree1 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

tree2 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

那么tree1 和 tree2 的前序和后序完全相同,这是一棵树么,很明显是两棵树!

所以前序和后序不能唯一确定一棵二叉树!

#总结

之前我们讲的二叉树题目都是各种遍历二叉树,这次开始构造二叉树了,思路其实比较简单,但是真正代码实现出来并不容易。

所以要避免眼高手低,踏实地把代码写出来。

我同时给出了添加日志的代码版本,因为这种题目是不太容易写出来调一调就能过的,所以一定要把流程日志打出来,看看符不符合自己的思路。

大家遇到这种题目的时候,也要学会打日志来调试(如何打日志有时候也是个技术活),不要脑动模拟,脑动模拟很容易越想越乱。

最后我还给出了为什么前序和中序可以唯一确定一棵二叉树,后序和中序可以唯一确定一棵二叉树,而前序和后序却不行。

认真研究完本篇,相信大家对二叉树的构造会清晰很多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/617204.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【服务器】服务器管理 - cockpit开启

开启cockpit #!/bin/bashsed -i s/is():where()/is(*):where(*)/ /usr/share/cockpit/static/login.jssystemctl enable --now cockpit.socket #开启cockpit服务systemctl start cockpit.socket 登录 https://ip:9090

MFC 记录字段交换(RFX)学习

MFC ODBC 数据库类可自动移动数据源与记录集对象之间的数据。 从 CRecordset 派生类且不使用批量取行时,数据将通过记录字段交换 (RFX) 机制进行传输。 如果已在派生的 CRecordset 类中实现批量取行,则此框架将使用批量记录字段交换(批量 RFX)机制来传输数据。 RFX 类似于…

jQuery文字洗牌动效

html代码 效果展示 jQuery文本洗牌效果插件 <div class"container"><p class"lead">文本洗牌动画特效</p><h1 id"basic">A time to seek,</h1><h1 id"custom">and a time to lose;</h1> &…

Unity Shader 开发入门3 —— 坐标空间变换

文章目录 一、变换矩阵1.1 齐次坐标1.2 平移矩阵1.3 旋转矩阵1.4 缩放矩阵1.5 复合变换 二、世界空间变换三、观察空间变换四、裁剪空间变换4.1 视椎体4.2 齐次裁剪空间4.3 视椎体投影方式 五、屏幕空间变换 ​ 在 Shader 开发中存在不同的坐标空间&#xff0c;包括&#xff1a…

Open3D 截取感兴趣的点云部分

import time import open3d as o3d; import numpy as np; import matplotlib.pyplot as plt from scipy.signal import find_peaks#坐标 mesh_coord_frame o3d.geometry.TriangleMesh.create_coordinate_frame(size355, origin[0, 0, 0]) #mesh_coord_frame mesh_coord_frame…

云服务器十大服务商——云服务器哪家好用

云服务器哪家便宜&#xff1f;2024最新整理你要的都在这&#xff01;头部云厂商阿里云、腾讯云、华为云、京东云、UCloud等都在降价&#xff0c;阿腾云atengyun.com分享2024年云服务器租用价格给你惊喜&#xff01; 便宜云服务器阿里云腾讯云华为云 2024年便宜云服务器汇总&…

性能测试分析案例-定位服务吞吐量下降

环境准备 预先安装 docker、curl、wrk、perf、FlameGraph 等工具 sudo yum groupinstall Development Tools # 安装火焰图工具 git clone https://github.com/brendangregg/FlameGraph # 安装wrk git clone https://github.com/wg/wrk cd wrk && make && sud…

创建了使用说明书之后,怎样才能监测用户的行为和反馈?

在当今数字化的时代&#xff0c;了解用户的行为和反馈对于产品和服务的质量提升至关重要。对于使用说明书而言&#xff0c;仅仅创建出来是远远不够的&#xff0c;还需要持续地监测用户的行为和反馈&#xff0c;以便不断优化和改进。那怎样才能有效地监测用户的行为和反馈呢&…

vue3打包后页面空白解决方法

vue3打包后页面空白解决方法 问题解决方法 问题 最近写一个小项目 没有打包的时候一切正常 技术栈用的vue3 vite 我用的是npm创建的项目 npm init vuelatest问题一 &#xff1a;打包后页面空白&#xff0c;什么都没有 问题二&#xff1a;刷新页面后找不到资源 把url的inde…

最佳解决方案:如何在网络爬虫中解决验证码

Captcha&#xff08;全自动区分计算机和人类的公开图灵测试&#xff09;是广泛应用的安全措施&#xff0c;用于区分合法的人类用户和自动化机器人。它通过呈现复杂的挑战&#xff0c;包括视觉上扭曲的文本、复杂的图像或复杂的拼图等方式&#xff0c;要求用户成功解决这些挑战以…

5、MAE:探索视觉预训练模型

目录 1、论文 2、背景与动机 3、回答的问题 4、创新与卖点 5、实现细节 模型框架 具体步骤 简单代码示例 6、一些资料 1、论文 Masked Autoencoders Are Scalable Vision Learnershttps://arxiv.org/pdf/2111.06377.pdf 2、背景与动机 在深度学习和计算机视觉的领域中…

Centos7,Python3.7.6安装模块Crypto,pycryptodome,ibm_db,requests,requests_pkcs12

Centos7,Python3.7.6安装模块Crypto&#xff0c;pycryptodome&#xff0c;ibm_db&#xff0c;requests,requests_pkcs12 Python版本&#xff1a;python3.7.6 对应的各种模块 前言&#xff1a;把python项目放到linux上运行时&#xff0c;提示缺少各种模块&#xff0c;安装命令…

【NetApp数据恢复】NetApp存储中Oracle数据库数据恢复案例

NetApp数据恢复环境&#xff1a; NetApp某型号存储&#xff0c;存储中有数十块SAS硬盘&#xff0c;该型号NetApp存储硬盘是扇区大小是520字节。存储中的lun都映射给小型机使用&#xff0c;存放Oracle数据库文件&#xff0c;采用ASM裸设备存储方式。 NetApp存储故障&#xff1a…

Linux tail命令详解和高级用法举例

目 录 一、概述 二、tail命令解释 1&#xff0e;命令格式; 2&#xff0e;功能 3&#xff0e;选项 4&#xff0e;选项的基本用法 &#xff08;1&#xff09; 显示行号 &#xff08;2&#xff09;忽略指定字符数 &#xff08;3&#xff09; 不显示文件名 三…

前端面试题集合一

Canvas是什么&#xff1f;怎样写Canvas&#xff1f; Canvas是HTML5的一个元素&#xff0c;它使用JavaScript在网页上绘制图形。Canvas是一个矩形区域。它的每一个像素都可以由HTML5语言来控制。使用Canvas绘制路径、框、圆、字符和添加图像有几种方法。 如果要在我们的HTML文…

ASP .net core微服务实战(杨中科)

背景&#xff1a; 主要是思考下&#xff0c;我们为什么要用微服务&#xff1f; 微服务我现在理解是&#xff1a;提供了我们一种模块化的手段&#xff0c;一个服务负责一种类型的业务&#xff0c;是一种面对复杂问题进行拆分的方式&#xff0c;但是也会引入一些中间件&#xf…

【期末考试】网络综合复习宝典

相关链接 网络复习思维导图&#xff08;HCIP&#xff09;https://www.edrawsoft.cn/viewer/public/s/038e2370897928 详述循环冗余校验CRC码https://blog.csdn.net/liht_1634/article/details/124328005?app_version6.2.6&codeapp_1562916241&csdn_share_tail%7B%22…

小魔推行业玩法:生活美容怎么做短视频矩阵?

如今每个实体老板都想让自己生意做的更好&#xff0c;那就需要有更多获取流量的方式&#xff0c;获得大量的同城曝光&#xff1b;在市场内卷的状况下&#xff0c;通过短视频来做门店引流无疑是绝佳的方式&#xff0c;让更多同城的用户知晓自己的门店&#xff0c;这个时候通过小…

12.8-1.8

2023.12.8 redis容器 docker run -p 6379:6379 --name redis -v /mydata/redis/data:/data -v /mydata/redis/conf/redis.conf:/etc/redis/redis.conf -d redis redis-server /etc/redis/redis.conf redis.conf不存在&#xff0c;需先在宿主机创建该目录下文件&#xff0c…

FilterQuery过滤查询

ES中的查询操作分为两种&#xff1a;查询和过滤。查询即是之前提到的query查询&#xff0c;它默认会计算每个返回文档的得分&#xff0c;然后根据得分排序。而过滤只会筛选出符合条件的文档&#xff0c;并不计算得分&#xff0c;并且可以缓冲记录。所以我们在大范围筛选数据时&…