区间预测 | Matlab实现CNN-BiLSTM-KDE的卷积双向长短期神经网络结合核密度估计多变量时序区间预测

区间预测 | Matlab实现CNN-BiLSTM-KDE的卷积双向长短期神经网络结合核密度估计多变量时序区间预测

目录

    • 区间预测 | Matlab实现CNN-BiLSTM-KDE的卷积双向长短期神经网络结合核密度估计多变量时序区间预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.CNN-BiLSTM-KDE多变量时间序列区间预测,基于卷积双向长短期记忆神经网络多变量时序区间预测,卷积双向长短期记忆神经网络的核密度估计下置信区间预测。
2.含点预测图、置信区间预测图、核密度估计图,区间预测(区间覆盖率PICP、区间平均宽度百分比PINAW),点预测多指标输出(R2、MAE、MAPE、MBE、 MSE),多输入单输出。
3.运行环境为Matlab2021b及以上;
4.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列区间预测;
5.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹。

在这里插入图片描述

累积分布函数(CDF)
估计误差小于实际误差:估计累计误差分布的大小小于实际累计误差分布的大小。说明在误差估计方法对系统的噪声或者不确定性进行了较好的建模,并且能够对误差进行较为准确的预测。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现CNN-BiLSTM-KDE的卷积双向长短期神经网络结合核密度估计多变量时序区间预测
%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 100,...                  % 最大训练次数'MiniBatchSize',64,...                % 批处理'InitialLearnRate', 0.001,...         % 初始学习率为0.001'L2Regularization', 0.001,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);
% 可视化估计的密度函数
figure;
subplot(2,1,1); 
histfit(train_errors,100,'kernel', 'Normalization', 'probability')
legend('误差分布');
xlabel('误差');
ylabel('频数');
title('误差分布曲线');
subplot(2,1,2); xlabel('误差');
ylabel('概率密度');
legend('估计密度');
title('核密度估计曲线');% 累积分布函数(CDF)
% 估计误差小于实际误差:估计累计误差分布的大小小于实际累计误差分布的大小。
% 这种情况可能出现在误差估计方法对系统的噪声或者不确定性进行了较好的建模,并且能够对误差进行较为准确的预测。
figure;
cdfplot(train_errors);
hold on;
title('累积分布函数 (CDF) 比较');
xlabel('误差');
ylabel('累积概率');
legend('实际误差累积分布函数CDF', '估计误差累积分布函数CDF');
% 计算累积分布函数(CDF)
cdf_train = cumsum(f_train) * (x_train(2) - x_train(1));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/614118.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习原理到Python代码实现之KNN【K近邻】

K-Nearest Neighbor K近邻算法 该文章作为机器学习的第三篇文章,主要介绍的是K紧邻算法,这是机器学习中最简单的一种分类算法,也是机器学习中最基础的一种算法。 难度系数:⭐ 更多相关工作请参考:Github 算法介绍 K近…

【python】python新年烟花代码【附源码】

欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 新年的钟声即将敲响,为了庆祝这个喜庆的时刻,我们可以用 Python 编写一个炫彩夺目的烟花盛典。本文将详细介绍如何使用 Pygame 库创建一个令人惊叹的烟花效果。 一、效果图: 二…

安防视频监控系统EasyCVR设备分组中在线/离线数量统计的开发与实现

安防视频监控EasyCVR系统具备较强的兼容性,它可以支持国标GB28181、RTSP/Onvif、RTMP,以及厂家的私有协议与SDK,如:海康ehome、海康sdk、大华sdk、宇视sdk、华为sdk、萤石云sdk、乐橙sdk等。EasyCVR平台可覆盖多类型的设备接入&am…

旋转图像(Rotate Image)- LeetCode 48

旋转图像(Rotate Image)- LeetCode 48 题目描述 给定一个n x n 2D矩阵表示的图像,我们需要将该图像旋转90度。并且,重要的是我们需要在原地修改这个2D矩阵,不能使用额外的2D矩阵。 解题思路 1. 转置操作 首先&…

R语言下载安装及VScode配置

文章目录 1. R 下载和安装1.1 下载1.2 安装 2. VSCODE 配置2.1 安装R拓展2.2 安装R语言辅助功能包2.3 DEBUG 1. R 下载和安装 1.1 下载 网址:https://www.r-project.org/ 选择一个镜像地址下载 选择对应的版本 一般选择base即可 1.2 安装 下载安装包后按提示安装…

Npm+BootStrap布局

NpmBootStrap布局 NodeJs NodeJs概述 Node.js是Ryan Dahl于2009年5月基于Chrome V8引擎构建的一个开源和跨平台的JavaScript运行环境。主要在Windows、Linux、Unix、MacOSX等不同平台上运行 NodeJs意义 Node.js是一个javascript运行环境,它使得javascript可以脱离…

jupyter notebook 配置conda 虚拟环境python

conda创建python环境 conda create -n openvoice python3.9 激活环境 source activate openvoice 在虚拟环境中安装ipykernel pip install ipykernel 添加虚拟环境进到 jupyter notebook python -m ipykernel install --user --name openvoice --display-name openvoice …

Springboot+vue的毕业论文管理系统(有报告)。Javaee项目,springboot vue前后端分离项目

演示视频: Springbootvue的毕业论文管理系统(有报告)。Javaee项目,springboot vue前后端分离项目 项目介绍: 本文设计了一个基于Springbootvue的前后端分离的毕业论文管理系统,采用M(model&…

QT延时五种实现方法

QT中没有提供专用延时函数,但有多种实现方法,各有特点,如下所示: 一.阻塞方式 1.多线程程序使用QThread::sleep()或者QThread::msleep()或QThread::usleep()或QThread::wait()进行延时处理。 Sleep不会释放对象锁,其…

第3章:python的判断语句

学一门语言,无外乎多敲,多用,记得回顾昨天写过的代码呀 布尔类型和比较运算符 布尔类型的定义 使用比较运算符进行比较运算得到布尔类型的结果 比较运算符 """ 演示布尔类型的定义 以及比较运算符的应用 ​ """…

并发前置知识一:线程基础

一、通用的线程生命周期:“五态模型” 二、java线程有哪几种状态? New:创建完线程Runable:start(),这里的Runnable包含操作的系统的Running(运行状态)和Ready(上面的可运行状态)Blo…

vscode配置Todo Tree插件

一、在VSCode中安装插件Todo Tree ​​​​ 二、按下快捷键ctrlshiftP,输入setting.jspn 选择相应的配置范围,我们选择的是用户配置 Open User Settings(JSON),将以下代码插入其中。 {//todo-tree 标签配置从这里开始 标签兼容大小写字母(…

强化学习9——免模型预测算法介绍(蒙特卡洛方法和时步差分方法)

对于大部分情况来说,环境是未知的,也就是说状态转移概率未知,对于这种情况的算法称为免模型预测算法。免模型算法与环境不断交互学习,但是需要大量的运算。 蒙特卡洛方法 蒙特卡罗方法通过重复随机抽选,之后运用统计…

Phaser详解

Phaser是一个相对较新且功能强大的同步原语,它于Java 7中引入,用于协调并行任务的执行。与CyclicBarrier和CountDownLatch等传统的同步工具相比,Phaser提供了更灵活和更高级的功能,特别是在处理动态和可变的并行任务集合时。 1.P…

Python-基础语法

标识符 第一个字符必须是字母表中字母或下划线 _ 。标识符的其他的部分由字母、数字和下划线组成。标识符对大小写敏感。在 Python 3 中,可以用中文作为变量名,非 ASCII 标识符也是允许的了。 python保留字 保留字即关键字,我们不能把它们用…

MATLAB全局最优搜索函数:GlobalSearch函数

摘要:本文介绍了 GlobalSearch 函数的使用句式(一)、三个运行案例(二)、 GlobalSearch 函数的参数设置(三)、GlobalSearch 注意事项及必要说明(五)等内容。详细介绍如下&…

超维空间S2无人机使用说明书——11、使用3维激光雷达实现ROS无人机的精准定位

引言:在工程应用中,往往需要在没有GPS信号的情况下实现无人机的资助或者稳定的飞行。实现这个的基础就是定位,有了准确的定位信息,无人机才能稳定的飞行。性比较于视觉定位效果,目前3D雷达相对更加稳定,视觉…

FineBI实战项目一(18):每小时上架商品个数分析开发

点击新建组件,创建每小时上架商品个数组件。 选择线图,拖拽cnt(总数)到纵轴,拖拽hourStr到横轴。 修改横轴和纵轴的文字。 调节连线样式。 添加组件到仪表板。

【LeetCode】59. 螺旋矩阵II(中等)——代码随想录算法训练营Day02

题目链接:59. 螺旋矩阵II 题目描述 给你一个正整数 n ,生成一个包含 1 到 n 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1: 输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]] 示例 …

攒机到底能省多少钱?

昨天弄好了攒机配置,今天要求配置一些更为实用的配置,只是作为一般办公,单位买进来的计算机都是联想,价格普遍在7000元以上,出于省钱和实用目的,今天搭配了一个组机方案。 上面的配置对付一般办公足够&…