YOLOV8

YOLOv8 是 ultralytics (超溶体)公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,在还没有开源时就收到了用户的广泛关注。

总结:

1. 是YOLOV5的继承者

2. 支持多任务

目录

1. YOLOv8 概述

2. 模型结构设计

3. Loss 计算

4. 训练数据增强

5. 训练策略

6. 模型推理过程

7. 特征图可视化

总结


官方开源地址icon-default.png?t=N7T8https://github.com/ultralytics/ultralytics%E2%80%8B

按照官方描述,YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

不过 ultralytics 并没有直接将开源库命名为 YOLOv8,而是直接使用 ultralytics 这个词,原因是 ultralytics 将这个库定位为算法框架,而非某一个特定算法,一个主要特点是可扩展性。其希望这个库不仅仅能够用于 YOLO 系列模型,而是能够支持非 YOLO 模型以及分类分割姿态估计等各类任务。(这不就是妥妥的:detectron2 吗,代码加载都放在 __init__.py中,都面相对象了,变成框架了,代码好不直观。使用是更傻瓜了,但是代码更难分离,更难懂了,这是深度封装的的诟病)
总而言之,ultralytics 开源库的两个主要优点是:

  • 融合众多当前 SOTA 技术于一体
  • 未来将支持其他 YOLO 系列以及 YOLO 之外的更多算法

(评注:框架太多了,可以忽略学习)

下表为官方在 COCO Val 2017 数据集上测试的 mAP、参数量和 FLOPs 结果。可以看出 YOLOv8 相比 YOLOv5 精度提升非常多,但是 N/S/M 模型相应的参数量和 FLOPs 都增加了不少,从上图也可以看出相比 YOLOV5 大部分模型推理速度变了。

模型YOLOv5params(M)FLOPs@640 (B)YOLOv8params(M)FLOPs@640 (B)
n28.0(300e)1.94.537.3 (500e)3.28.7
s37.4 (300e)7.216.544.9 (500e)11.228.6
m45.4 (300e)21.249.050.2 (500e)25.978.9
l49.0 (300e)46.5109.152.9 (500e)43.7165.2
x50.7 (300e)86.7205.753.9 (500e)68.2257.8


额外提一句,现在各个 YOLO 系列改进算法都在 COCO 上面有明显性能提升,但是在自定义数据集上面的泛化性还没有得到广泛验证,至今依然听到不少关于 YOLOv5 泛化性能较优异的说法

 

1. YOLOv8 概述

具体到 YOLOv8 算法,其核心特性和改动可以归结为如下:

  1. 提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
  2. 骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。不过这个 C2f 模块中存在 Split 等操作对特定硬件部署没有之前那么友好了
  3. Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从 Anchor-Based 换成了 Anchor-Free
  4. Loss 计算方面采用了 TaskAlignedAssigner 正样本分配策略,并引入了 Distribution Focal Loss
  5. 训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

从上面可以看出,YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践,主推的还是 ultralytics 这个框架本身。

下面将按照模型结构设计、Loss 计算、训练数据增强、训练策略和模型推理过程共 5 个部分详细介绍 YOLOv8 目标检测的各种改进,实例分割部分暂时不进行描述。

2. 模型结构设计

以上为基于 YOLOv8 官方代码所绘制的模型结构图。如果你喜欢这种模型结构图风格,可以查看 MMYOLO 里面对应算法 README 中的模型结构图,目前已经支持了 YOLOv5、YOLOv6、YOLOX、RTMDet 和 YOLOv8。

MMYOLO 中重构的 YOLOv8 模型对应结构图如下所示:
详细地址为: https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md


在暂时不考虑 Head 情况下,对比 YOLOv5 和 YOLOv8 的 yaml 配置文件可以发现改动较小。

左侧为 YOLOv5-s,右侧为 YOLOv8-s

骨干网络和 Neck 的具体变化为:

  • 第一个卷积层的 kernel 从 6x6 变成了 3x3
  • 所有的 C3 模块换成 C2f,结构如下所示,可以发现多了更多的跳层连接和额外的 Split 操作

  • 去掉了 Neck 模块中的 2 个卷积连接层
  • Backbone 中 C2f 的block 数从 3-6-9-3 改成了 3-6-6-3
  • 查看 N/S/M/L/X 等不同大小模型,可以发现 N/S 和 L/X 两组模型只是改了缩放系数,但是 S/M/L 等骨干网络的通道数设置不一样,没有遵循同一套缩放系数。如此设计的原因应该是同一套缩放系数下的通道设置不是最优设计,YOLOv7 网络设计时也没有遵循一套缩放系数作用于所有模型

Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构如下所示:


可以看出,不再有之前的 objectness 分支,只有解耦的分类和回归分支,并且其回归分支使用了 Distribution Focal Loss 中提出的积分形式表示法, DFL 的描述见知乎推文:大白话 Generalized Focal Loss - 知乎

3. Loss 计算

Loss 计算过程包括 2 个部分: 正负样本分配策略和 Loss 计算。

现代目标检测器大部分都会在正负样本分配策略上面做文章,典型的如 YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner,这类 Assigner 大都是动态分配策略,而 YOLOv5 采用的依然是静态分配策略。考虑到动态分配策略的优异性,YOLOv8 算法中则直接引用了 TOOD 的 TaskAlignedAssigner。

TaskAlignedAssigner 的匹配策略简单总结为: 根据分类与回归的分数加权的分数选择正样本

s 是标注类别对应的预测分值,u 是预测框和 gt 框的 iou,两者相乘就可以衡量对齐程度。

  1. 对于每一个 GT,对所有的预测框基于 GT 类别对应分类分数,预测框与 GT 的 IoU 的加权得到一个关联分类以及回归的对齐分数 alignment_metrics
  2. 对于每一个 GT,直接基于 alignment_metrics 对齐分数选取 topK 大的作为正样本


Loss 计算包括 2 个分支: 分类和回归分支,没有了之前的 objectness 分支。

  • 分类分支依然采用 BCE Loss
  • 回归分支需要和 Distribution Focal Loss 中提出的积分形式表示法绑定,因此使用了 Distribution Focal Loss, 同时还使用了 CIoU Loss

3 个 Loss 采用一定权重比例加权即可。

4. 训练数据增强

数据增强方面和 YOLOv5 差距不大,只不过引入了 YOLOX 中提出的最后 10 个 epoch 关闭 Mosaic 的操作。假设训练 epoch 是 500,其示意图如下所示:


考虑到不同模型应该采用的数据增强强度不一样,因此对于不同大小模型,有部分超参会进行修改,典型的如大模型会开启 MixUp 和 CopyPaste。数据增强后典型效果如下所示:


上述效果可以运行https://github.com/open-mmlab/mmyolo/blob/dev/tools/analysis_tools/browse_dataset.py 脚本得到

由于每个 pipeline 都是比较常规的操作,本文不再赘述。如果想了解每个 pipeline 的细节,可以查看 MMYOLO 中 YOLOv5 的算法解析文档:https://mmyolo.readthedocs.io/zh_CN/latest/algorithm_descriptions/yolov5_description.html#id2


5. 训练策略

YOLOv8 的训练策略和 YOLOv5 没有啥区别,最大区别就是模型的训练总 epoch 数从 300 提升到了 500,这也导致训练时间急剧增加。以 YOLOv8-S 为例,其训练策略汇总如下:

配置YOLOv8-s P5 参数
optimizerSGD
base learning rate0.01
Base weight decay0.0005
optimizer momentum0.937
batch size128
learning rate schedulelinear
training epochs500
warmup iterationsmax(1000,3 * iters_per_epochs)
input size640x640
EMA decay0.9999

6. 模型推理过程

YOLOv8 的推理过程和 YOLOv5 几乎一样,唯一差别在于前面需要对 Distribution Focal Loss 中的积分表示 bbox 形式进行解码,变成常规的 4 维度 bbox,后续计算过程就和 YOLOv5 一样了。

以 COCO 80 类为例,假设输入图片大小为 640x640,MMYOLO 中实现的推理过程示意图如下所示:

其推理和后处理过程为:

(1) bbox 积分形式转换为 4d bbox 格式
对 Head 输出的 bbox 分支进行转换,利用 Softmax 和 Conv 计算将积分形式转换为 4 维 bbox 格式
(2) 维度变换
YOLOv8 输出特征图尺度为 80x80、40x40 和 20x20 的三个特征图。Head 部分输出分类和回归共 6 个尺度的特征图。
将 3 个不同尺度的类别预测分支、bbox 预测分支进行拼接,并进行维度变换。为了后续方便处理,会将原先的通道维度置换到最后,类别预测分支 和 bbox 预测分支 shape 分别为 (b, 80x80+40x40+20x20, 80)=(b,8400,80),(b,8400,4)。
(3) 解码还原到原图尺度
分类预测分支进行 Sigmoid 计算,而 bbox 预测分支需要进行解码,还原为真实的原图解码后 xyxy 格式。
(4) 阈值过滤
遍历 batch 中的每张图,采用 score_thr 进行阈值过滤。在这过程中还需要考虑 multi_label 和 nms_pre,确保过滤后的检测框数目不会多于 nms_pre。
(5) 还原到原图尺度和 nms
基于前处理过程,将剩下的检测框还原到网络输出前的原图尺度,然后进行 nms 即可。最终输出的检测框不能多于 max_per_img。

有一个特别注意的点:YOLOv5 中采用的 Batch shape 推理策略,在 YOLOv8 推理中暂时没有开启,不清楚后面是否会开启,在 MMYOLO 中快速测试了下,如果开启 Batch shape 会涨大概 0.1~0.2。

7. 特征图可视化

MMYOLO 中提供了一套完善的特征图可视化工具,可以帮助用户可视化特征的分布情况。

以 YOLOv8-s 模型为例,第一步需要下载官方权重,然后将该权重通过https://github.com/open-mmlab/mmyolo/blob/dev/tools/model_converters/yolov8_to_mmyolo.py 脚本将去转换到 MMYOLO 中,注意必须要将脚本置于官方仓库下才能正确运行,假设得到的权重名字为 mmyolov8s.pth

假设想可视化 backbone 输出的 3 个特征图效果,则只需要

cd mmyolo # dev 分支
python demo/featmap_vis_demo.py demo/demo.jpg configs/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco.py mmyolov8s.pth --channel-reductio squeeze_mean


需要特别注意,为了确保特征图和图片叠加显示能对齐效果,需要先将原先的 test_pipeline 替换为如下:

test_pipeline = [dict(type='LoadImageFromFile',file_client_args=_base_.file_client_args),dict(type='mmdet.Resize', scale=img_scale, keep_ratio=False), # 这里将 LetterResize 修改成 mmdet.Resizedict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),dict(type='mmdet.PackDetInputs',meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape','scale_factor'))
]


从上图可以看出不同输出特征图层主要负责预测不同尺度的物体

我们也可以可视化 Neck 层的 3 个输出层特征图:

cd mmyolo # dev 分支
python demo/featmap_vis_demo.py demo/demo.jpg configs/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco.py mmyolov8s.pth --channel-reductio squeeze_mean --target-layers neck

从上图可以发现物体处的特征更加聚焦。

总结


本文详细分析和总结了最新的 YOLOv8 算法,从整体设计到模型结构、Loss 计算、训练数据增强、训练策略和推理过程进行了详细的说明,并提供了大量的示意图供大家方便理解。

简单来说 YOLOv8 是一个包括了图像分类、Anchor-Free 物体检测和实例分割的高效算法,检测部分设计参考了目前大量优异的最新的 YOLO 改进算法,实现了新的 SOTA。不仅如此还推出了一个全新的框架。不过这个框架还处于早期阶段,还需要不断完善。

由于时间仓促且官方代码在不断完善中,如果有不对的地方,欢迎批评和指正。MMYOLO 会尽快地跟进并复现该算法,敬请期待!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/613494.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

msvcr120.dll是什么?msvcr120.dll丢失要怎么去修复?

随着计算机技术的不断发展,我们在使用软件或游戏时经常会遇到各种错误提示,其中找不到msvcr120.dll就是一种常见的错误。那么,msvcr120.dll是什么?它的作用是什么?如何修复msvcr120.dll丢失的问题?本文将为…

1.4号io网络

1.多进程 引入目的:让多个任务实现并发执行 并发执行:同一时间只有一个进程执行,通过时间轮询调度多个进程,由于时间每个进程所用时间极短,所以宏观表现为多个进程同时进行。 并行执行:多个任务器执行多…

【福利】百度内容审核平台实战

文章目录 前言功能概述产品价格快速入门(账号登录及资源领取、在线验证、编写示例程序)实战演示1、首先创建一个应用2、引入百度的SDK3、测试用例百度内容审核-文本 200QPS百度内容审核-图像 50QPS 写在最后 前言 百度内容审核平台主要针对图像、文本、…

C语言可变参数输入

本博文源于笔者正在学习的可变参数输入&#xff0c;可变参数是c语言函数中的一部分&#xff0c;下面本文就以一个很小的demo演示可变参数的编写 问题来源 想要用可变参数进行多个整数相加 方法源码 #include<stdio.h> #include<stdlib.h> #include<stdarg.h…

接口测试基础(超详细)

一、HTTP 1、http请求头和响应头包含那些内容&#xff1f; 请求头信息 请求报头允许客户端向服务器端传递请求的附加信息以及客户端自身的信息。 2、常用的请求报头如下&#xff1a; Accept&#xff1a;浏览器可接受的MIME类型。 l MIME用于设定某种扩展名的文件用哪种应用程…

tiktok_浅谈hook ios之发包x-ss-stub

frida-trace ios手机一部&#xff0c;需要越狱的电脑一台idacrackerXI 目标app&#xff1a; ipa 包&#xff0c;点击前往 密码&#xff1a;8urs 协议分析起始从抓包开始&#xff0c;个人习惯 一般安卓逆向可以直接搜关键词&#xff0c;但是ios 都在 Mach-O binary (reverse…

基于ssm学生社团管理系统+vue论文

摘 要 如今的时代&#xff0c;是有史以来最好的时代&#xff0c;随着计算机的发展到现在的移动终端的发展&#xff0c;国内目前信息技术已经在世界上遥遥领先&#xff0c;让人们感觉到处于信息大爆炸的社会。信息时代的信息处理肯定不能用之前的手工处理这样的解决方法&#x…

DAPP和APP的区别在哪?

随着科技的飞速发展&#xff0c;我们每天都在与各种应用程序打交道。然而&#xff0c;你是否真正了解DAPP和APP之间的区别呢&#xff1f;本文将为你揭示这两者的核心差异&#xff0c;让你在自媒体平台上脱颖而出。 一、定义与起源 APP&#xff0c;即应用程序&#xff0c;通常指…

一文读懂JVS逻辑引擎如何调用规则引擎:含详细步骤与场景示例

在当今的数字化时代&#xff0c;业务逻辑和规则的复杂性不断增加&#xff0c;这使得逻辑引擎和规则引擎在处理业务需求时显得尤为重要。逻辑引擎和规则引擎通过定义、解析和管理业务逻辑和规则&#xff0c;能够帮助企业提高工作效率、降低运营成本&#xff0c;并增强决策的科学…

数据科学低代码工具思考2—现状分析

数据科学工具伴随着计算机技术的发展也在持续的演进。数据库、大数据以及人工智能等时代标志性技术的出现&#xff0c;对数据科学工具的能力也有了更高的要求。一般而言&#xff0c;工具发展的趋势都是首先会出现一个能够支持数据科学计算的开发框架&#xff0c;方便用户能够更…

RHCE9学习指南 第20章 计划任务

有时需要在某个指定的时间执行一个操作&#xff0c;此时就要使用计划任务了。计划任务有两种&#xff1a;一个是at计划任务&#xff0c;另一个是crontab计划任务。 下面我们分别来看这两种计划任务的使用。 20.1 at at计划任务是一次性的&#xff0c;到了指定的时间点时就开始…

mac图片格式转换软件有哪些?推荐6个实用软件

mac图片格式转换软件有哪些&#xff1f;在数字时代&#xff0c;图片格式的转换已成为我们日常工作中不可或缺的一部分。对于Mac用户来说&#xff0c;选择一款高效、便捷的图片格式转换软件尤为重要。本文将为你介绍几款备受推崇的Mac图片格式转换软件&#xff0c;让你轻松应对各…

MySQL 5.7.35下载安装使用_忘记密码_远程授权

文章目录 MySQL 5.7.35下载安装使用_忘记密码_远程授权MySQL下载地址mysql安装点击安装&#xff0c;最好以管理员身份运行选择自定义安装选择64位勾选启动自定义产品执行点击同意点击下一步点击执行下一步配置数据库端口号设置登录密码&#xff0c;如果密码忘记&#xff0c;下面…

最新PyCharm安装详细教程及pycharm配置_pycharm安装教程

目录 一、PyCharm简介及其下载网站 二、单击网站的Downloads&#xff0c;进入二级页面&#xff0c;选择对应的操作系统下载PyCharm 三、PyCharm的安装程序的安装及其配置(configuration) 1、运行PyCharm Setup 2、安装位置设置 3、安装选项设置 4、开始菜单中PyCharm快捷方式的…

CMake入门教程【高级篇】管理MSVC编译器警告

😈「CSDN主页」:传送门 😈「Bilibil首页」:传送门 😈「动动你的小手」:点赞👍收藏⭐️评论📝 文章目录 1.什么是MSVC?2.常用的屏蔽警告3.MSVC所有警告4.target_compile_options用法5.如何在CMake中消除MSVC的警告?6.屏蔽警告编写技巧

如何使用css隐藏掉滚动条

1.解决方案 在滚动元素上再包裹一个父元素&#xff0c;然后&#xff0c;该元素添加如下代码&#xff1a; &#xff08;注&#xff1a;PC端浏览器滚动条为8px&#xff09;使元素偏移原来位置8px&#xff0c;目的就是将滚动条区域移动到父元素边框外面&#xff0c;然后&#xff…

PFA试剂瓶——实验室存储运输化学试剂样品容器

PFA是一种高性能的塑料材料。它是一种热塑性塑料&#xff0c;由全氟化&#xff0c;聚合物制成&#xff0c;具有高度的化学稳定性性。由于其优异的性能&#xff0c;PFA被广泛应用于多个领域&#xff0c;尤其是作为存储和运输各种化学试剂的容器&#xff0c;耐受-200℃至260C的温…

云流量回溯的工作原理及关键功能

云计算和网络技术的快速发展为企业提供了更灵活、高效的业务运营环境&#xff0c;同时也引发了一系列网络安全挑战。在这个背景下&#xff0c;云流量回溯成为网络安全领域的一个关键技术&#xff0c;为企业提供了对网络活动的深入洞察和实时响应的能力。 一、 云流量回溯的基本…

UTONMOS:探索元宇宙,开启未来游戏新篇章

在元宇宙的世界里&#xff0c;游戏不再只是消遣&#xff0c;而是一个全新的互动世界&#xff0c;等待你来探索&#xff01; 逼真的虚拟现实技术&#xff0c;让你沉浸在充满想象力的游戏世界中&#xff0c;体验前所未有的刺激和乐趣。 与来自全球的玩家互动交流&#xff0c;结…

CodeWave智能开发平台--03--目标:应用创建--09供应商详情页面下

摘要 本文是网易数帆CodeWave智能开发平台系列的第13篇&#xff0c;主要介绍了基于CodeWave平台文档的新手入门进行学习&#xff0c;实现一个完整的应用&#xff0c;本文主要完成09供应商详情页面下主营产品展示及权限管理 CodeWave智能开发平台的13次接触 CodeWave参考资源…