重点问题提问

mysql主从复制原理

slave每隔一段时间监听master,当master数据发生改变,master将数据写进二进制日志,slave开启一个io线程请求二进制日志,master在每个io线程上开启dump线程,将二进制日志传给slave,slave接收到二进制日志,将二进制日志放到中继日志,slave开启sql线程,将中继日志中的数据逐一执行

MHA工作原理

manager定时探测集群中的master节点,当master出现故障,manager会自动将最新数据的slave提升为新的master,然后将其他的slave指向新的master,整个故障转移过程对客户端应用程序完全透明

redis主从复制原理

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。

(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中,同时Master还会记录修改数据的所有命令并缓存在数据文件中。

(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。

(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Master同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

哨兵故障转移原理

(1)由哨兵节点定期监控发现主节点是否出现了故障。每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

(2)当主节点出现故障,此时哨兵节点会通过Raft算法实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

(3)由leader哨兵节点执行故障转移,过程如下:

●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;

●若原主节点恢复也变成从节点,并指向新的主节点;

●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

集群数据分片的原理

Redis集群引入了哈希槽的概念

Redis集群有16384个哈希槽(编号0-16383)

集群的每组节点负责一部分哈希槽

每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,

然后直接自动跳转到这个对应的节点上进行存取操作

nginx优化

应用程序配置文件优化:
性能优化:
IO多路复用               use epoll;
设置工作进程数           worker_processes  与CPU数量相同或auto;
工作进程静态绑核         worker_cpu_affinity
设置并发                 worker_connections       worker_rlimit_nofile
连接保持超时             keepalive_timeout  服务器超时时间 [客户端超时时间];
网页压缩                 gzip on;
页面缓存时间             expires 时间;

安全优化:
隐藏版本号               server_tokens off;       修改源代码
防盗链                   rewrite 
设置运行用户/组          user  用户名 组名;
限制单个ip的访问频率     limit_req
限制单个ip的连接数       limit_conn

日志分割                 脚本 + crontab


系统内核优化:
/etc/sysctl.conf  内核参数配置文件
net.ipv4.tcp_syncookies = 1                  开启SYN Cookies,当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击
net.ipv4.tcp_tw_reuse = 1                    开启重用,允许将TIME-WAIT sockets重新用于新的TCP连接
net.ipv4.tcp_tw_recycle = 1                  开启TCP连接中TIME-WAIT sockets的快速回收
net.ipv4.tcp_fin_timeout = 30                修改系默认的 TIMEOUT 时间(MSL值)
net.ipv4.tcp_max_tw_buckets = 5000           系统同时保持TIME-WAIT的最大数量
net.ipv4.ip_local_port_range = 1024 65535    外向连接的端口范围
net.ipv4.tcp_max_syn_backlog = 8192          系统能接受的tcp半连接的最大队列数
net.core.somaxconn = 10000                   每一个端口最大的 Listen 监听队列的长度
net.ipv4.tcp_keepalive_time = 1200           发送keepalive探测包消息的频率

/etc/security/limits.conf   内核限制文件
*     soft     noproc            65535      打开的进程数
*     hard     noproc            65535
*     soft     nofile            65535      打开的文件数
*     hard     nofile            65535
*     soft     memlock         unlimited     不做内存锁定
*     hard     memlock         unlimited


用过哪些nginx模块?
http_gzip_module              网页压缩模块
http_stub_status_module       状态统计模块
http_auth_basic_module        网页用户认证模块
http_fastcgi_module           fastcgi转发php-fpm的模块
http_rewrite_module           URL重写模块
http_ssl_module               https安全加密模块
http_limit_conn_module        限制最大连接数模块
http_limit_req_module         限制最大访问频率模块
http_proxy_module             请求转发模块
http_image_filter_module      图片处理模块
http_upstream_*_module        负载均衡服务器列表模块
stream_*_module               四层代理转发模块

tomcat优化

tomcat 的优化:
1)配置文件优化
修改 server.xml 文件
maxThreads(最大线程数/并发)  processorCache(进程缓冲)  acceptCount(等待队列数)  enableLookups(关闭DNS反向解析)  URIEncoding(网页字符集编码UTF-8) maxKeepAliveRequests(长连接最大请求数)  connectionTimeout(连接超时时间)  compression(开启页面压缩)

2)系统内核优化
/etc/security/limits.conf     nofile  nproc  memlock
/etc/sysctl.conf   net.ipv4.tcp_tw_reuse=1   net.ipv4.tcp_tw_recycle=1   net.ipv4.tcp_fin_timeout=30  
                   net.ipv4.tcp_max_tw_buckets=5000    net.ipv4.ip_local_port_range=1024 65535 

3)JVM优化
在 catalina.sh 中设置 JAVA_OPTS 参数
JAVA_OPTS="$JAVA_OPTS -server -Xms2048m -Xmx2048m -XX:PermSize=1024m -XX:MaxPermSize=1024m -Xmn768m"

-server  表示启用JDK的Server模式,实现在多核服务器性能更佳
-Xms2048m -Xmx2048m  设置JVM堆内存初始值和最大最一样大,一般设置为物理内存的 1/2
-XX:PermSize=1024m -XX:MaxPermSize=1024m   设置永久代(非堆内存)初始值和最大最一样大,一般设置为物理内存的 1/4
初始值和最大最设置一样大的原因:可以减少GC次数和内存伸缩带来的频繁内存申请,从而减少一定的系统开销。
-Xmn 设置JVM堆内存新生代的大小,一般设置为堆内存的 3/8

-XX:ParallelGCThreads=2   设置并行GC(垃圾回收)线程数,提高垃圾回收效率
-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/usr/local/tomcat/temp/oom.hprof  设置进程发生OOM异常退出会进行DUMP备份
-XX:+DisableExplicitGC  禁止调用System.gc()方法,防止误调用系统gc方法导致系统的JVM堆内存大起大落而使系统响应效率严重降低

LVS、Nginx、HAProxy做负载均衡各自优缺点

Nginx的优点:
●工作在网络的7层之上,可以针对http应用做一些分流的策略,比如针对域名、目录结构。Nginx正则规则比HAProxy更为强大和灵活。
●Nginx对网络稳定性的依赖非常小,理论上能ping通就就能进行负载功能,LVS对网络稳定性依赖比较大,稳定要求相对更高。
●Nginx安装和配置、测试比较简单、方便,有清晰的日志用于排查和管理,LVS的配置、测试就要花比较长的时间了。
●可以承担高负载压力且稳定,一般能支撑几万次的并发量,负载度比LVS相对小些。
●Nginx可以通过端口检测到服务器内部的故障,比如根据服务器处理网页返回的状态码、超时等等。
●Nginx不仅仅是一款优秀的负载均衡器/反向代理软件,它同时也是功能强大的Web应用服务器。
●Nginx作为Web正向加速缓存越来越成熟了,速度比传统的Squid服务器更快,很多场景下都将其作为向代理加速器。
●Nginx作为静态网页和图片服务器,这方面的性能非常优秀,同时第三方模块也很多。

Nginx的缺点:
●Nginx仅能支持http、https和Email协议,这样就在适用范围上面小些。
●对后端服务器的健康检查,只支持通过端口来检测,不支持通过url来检测。
●不支持Session的直接保持,需要通过ip_hash和cookie的引导来解决。

LVS的优点:
●抗负载能力强、是工作在网络4层之上仅作分发之用,没有流量的产生。因此负载均衡软件里的性能最强的,对内存和cpu资源消耗比较低。
●LVS工作稳定,因为其本身抗负载能力很强,自身有完整的双机热备方案。
●无流量,LVS只分发请求,而流量并不从它本身出去,这点保证了均衡器IO的性能不会收到大流量的影响。
●应用范围较广,因为LVS工作在4层,所以它几乎可对所有应用做负载均衡,包括http、数据库等。

LVS的缺点:
●软件本身不支持正则表达式处理,不能做动静分离。相对来说,Nginx/HAProxy+Keepalived则具有明显的优势。
●如果是网站应用比较庞大的话,LVS/DR+Keepalived实施起来就比较复杂了。相对来说,Nginx/HAProxy+Keepalived就简单多了。

HAProxy的优点:
●HAProxy也是支持虚拟主机的。
●HAProxy支持8种负载均衡策略。
●HAProxy的优点能够补充Nginx的一些缺点,比如支持Session的保持,Cookie的引导,同时支持通过获取指定的url来检测后端服务器的状态。
●HAProxy跟LVS类似,本身就只是一款负载均衡软件,单纯从效率上来讲HAProxy会比Nginx有更出色的负载均衡速度,在并发处理上也是优于Nginx的。
●HAProxy支持TCP协议的负载均衡转发。
 

LVS工作模式

(1)NAT 地址转换
调度器会作为所有节点服务器的默认网关,也是客户端的访问入口和节点服务器返回响应消息的出口,所以调度器会承载双向流量的负载压力,可能会为整个群集的性能瓶颈。由于节点服务器都会处于内网环境,使用私网IP,所以具有一点的安全行。

(2)TUN IP隧道   IP Tunnel  
调度器仅作为客户端的访问入口,节点服务器的响应消息是直接返回客户端的,不需要经过调度器。但是由于节点服务器需要部署在不同的公网环境,所以要有独立的公网IP,而且调度器与节点服务器是通过专用的IP隧道实现相互通信,因此IP隧道模式的成本较高、安全性较低,且数据IP隧道传输的过程中需要额外的封装和解封装,性能也会受到一定的影响。

(3)DR 直接路由  Direct Routing
调度器仅作为客户端的访问入口,节点服务器的响应消息是直接返回客户端的,不需要经过调度器。(与NAT模式的区别)
节点服务器与调度器是部署在同一个物理网络里,因此不需要建议专用的IP隧道。(与IP隧道模式的区别)
DR模式是企业首选的LVS模式。

简述LVS三种工作模式,简述他们的区别

NAT:通过网络地址转换实现的虚拟服务器,大并发访问时,调度器的性能成为瓶颈
DR:使用路由技术实现虚拟服务器,节点服务器需要配置VIP,注意MAC地址广播
TUN:通过隧道方式实现虚拟服务器。

LVS工作的优缺点

1、NAT模式(VS-NAT)

原理:首先负载均衡器接收到客户的请求数据包时,根据调度算法决定将请求发送给哪个后端的真实服务器(RS)。然后负载均衡器就把客户端发送的请求数据包的目标IP地址及端口改成后端真实服务器的IP地址(RIP)。真实服务器响应完请求后,查看默认路由,把响应后的数据包发送给负载均衡器,负载均衡器在接收到响应包后,把包的源地址改成虚拟地址(VIP)然后发送回给客户端。

优点:集群中的服务器可以使用任何支持TCP/IP的操作系统,只要负载均衡器有一个合法的IP地址。

缺点:扩展性有限,当服务器节点增长过多时,由于所有的请求和应答都需要经过负载均衡器,因此负载均衡器将成为整个系统的瓶颈。
2、直接路由模式(VS-DR)

原理:首先负载均衡器接收到客户的请求数据包时,根据调度算法决定将请求发送给哪个后端的真实服务器(RS)。然后负载均衡器就把客户端发送的请求数据包的目标MAC地址改成后端真实服务器的MAC地址(R-MAC)。真实服务器响应完请求后,查看默认路由,把响应后的数据包直接发送给客户端,不需要经过负载均衡器。

优点:负载均衡器只负责将请求包分发给后端节点服务器,而RS将应答包直接发给用户。所以,减少了负载均衡器的大量数据流动,负载均衡器不再是系统的瓶颈,也能处理很巨大的请求量。

缺点:需要负载均衡器与真实服务器RS都有一块网卡连接到同一物理网段上,必须在同一个局域网环境。
3、IP隧道模式(VS-TUN)

原理:首先负载均衡器接收到客户的请求数据包时,根据调度算法决定将请求发送给哪个后端的真实服务器(RS)。然后负载均衡器就把客户端发送的请求报文封装一层IP隧道(T-IP)转发到真实服务器(RS)。真实服务器响应完请求后,查看默认路由,把响应后的数据包直接发送给客户端,不需要经过负载均衡器。

优点:负载均衡器只负责将请求包分发给后端节点服务器,而RS将应答包直接发给用户。所以,减少了负载均衡器的大量数据流动,负载均衡器不再是系统的瓶颈,也能处理很巨大的请求量。

缺点:隧道模式的RS节点需要合法IP,这种方式需要所有的服务器支持“IP Tunneling”。

列举你知道的LVS调度算法

轮询(Round Robin);
加权轮询(Weighted Round Robin);
最少连接(Least Connections);
加权最少连接(Weighted Least Connections);
源地址哈希值(source hash)

脑裂

现象:主服务器和备服务器同时拥有VIP
原因:因为主服务器和备服务器之间的通信链路中断,导致备服务器无法收到主服务器发送的VRRP通告消息,备服务器误认为主服务器故障了并通过IP命令生成VIP
解决:关闭主服务器或备服务器其中一个的keepalived服务
预防:

(1)主服务器和备服务器之间添加双链路通信

(2)在主服务器上添加脚本进行判断与备服务器通信链路是否中断,如果确实是链路中断则自行关闭keepalived服务

(3)利用第三方应用或监控系统检测是否发送脑裂故障,如果发送脑裂故障则通过第三方应用或监控系统来关闭主服务器或备服务器上的keepalived服务

nginx反向代理(4层和7层)

四层反向代理:基于 IP + PORT 实现的代理转发(根据IP和PORT来转发请求),通常用于做客户端的访问入口和负载均衡器等应用场景。
配置:
1)编译安装需要 ./configure --with-stream 添加四层代理模块
2)在 http 同层级,一般在 http 配置块上面添加 stream 配置块,在里面定义服务器池、监听端口和转发配置
stream {
    upstream backend {
        server IP1:PORT1 weight=1;
        ....
        [调度策略];
    }

    server {
        listen PROT;
        proxy_pass backend;       #注:四层代理不需要添加协议
    }
}

http {....}

七层反向代理:基于 http、https、mail 等七层应用协议的代理转发(根据用户访问请求的URL路径来转发请求),通常用于动静分离等应用场景。
配置:
1)在 http 配置块中设置 upstream 定义 后端/上游服务器池的名称和节点参数
http {
    ....
    upstream backend {
        server IP1:PORT1 weight=1;
        ....
        [调度策略];
    }

2)在 server 配置块中用 location 匹配用户访问请求的URL路径,使用 proxy_pass 基于协议转发请求
    server {
        location ~ .*\./jsp {
            proxy_pass http://backend;
        
            proxy_set_header HOST $host;
            proxy_set_header X-Real-IP $remote_addr;
            proxy_set_header X-Forworded-For $proxy_add_x_forwarded_for;
        }
    }
}

Keepalived通过什么判断哪台主机为主服务器,通过什么方式配置浮动IP

Keepalived首先做初始化先检查state状态,master为主服务器,backup为备服务器。
然后再对比所有服务器的priority,谁的优先级高谁是最终的主服务器。
优先级高的服务器会通过ip命令为自己的电脑配置一个提前定义好的浮动IP地址。

keepalived的抢占与非抢占模式

抢占模式即MASTER从故障中恢复后,会将VIP从BACKUP节点中抢占过来。非抢占模式即MASTER恢复后不抢占BACKUP升级为MASTER后的VIP
非抢占式俩节点state必须为bakcup,且必须配置nopreempt。
注意:这样配置后,我们要注意启动服务的顺序,优先启动的获取master权限,与优先级没有关系了。

ctime,atime,mtime

ctime(status time):
当修改文件的权限或者属性的时候,就会更新这个时间,ctime并不是create time,更像是change time,
只有当更新文件的属性或者权限的时候才会更新这个时间,但是更改内容的话是不会更新这个时间。

atime(accesstime):
当使用这个文件的时候就会更新这个时间。

mtime(modification time):
当修改文件的内容数据的时候,就会更新这个时间,而更改权限或者属性,mtime不会改变,这就是和ctime的区别。

rewrite 和 location

从功能看 rewrite 和 location 似乎有点像,都能实现跳转,主要区别在于 rewrite 是在同一域名内更改获取资源的路径,而 location 是对一类路径做控制访问或反向代理,还可以proxy_pass 到其他机器。

rewrite 对访问的域名或者域名内的URL路径地址重写
location 对访问的路径做访问控制或者代理转发

redis的三大缓存问题

缓存雪崩:redis中大量缓存key集体过期
缓存穿透:大量请求访问redis和MySQL都不存在的资源
缓存击穿:redis中一个热点key过期,此时又有大量用户访问这个热点key(redis-cli --hotkeys 可用于查找热Key)


缓存雪崩的解决方案:
使用随机数设置key的过期时间,防止集体过期
设置缓存标记,如果缓存过期,则自动更新缓存
数据库使用排他锁,实现加锁等待


缓存穿透的解决方案:
对空值也进行缓存
使用布隆过滤器进行判断拦截一定不存在的无效请求
使用脚本实时监控,进行黑名单限制


缓存击穿的解决方案:
预先对热点数据进行缓存预热
监控数据,实时调整过期时长
数据库使用排他锁,实现加锁等待

如何保证 MySQL 和 redis 的数据一致性?

读取数据时,先从redis读取数据,如果redis中没有,再从MySQL中读取,并将读取到的数据同步到redis缓存中。
更新数据时,先更新MySQL数据库,再更新redis缓存
删除数据时,先删除redis缓存,再删除MySQL数据库
对于一些关键数据,可以使用MySQL的触发器来实现同步更新redis缓存。也可以使用定时任务,定时自动进行缓存预热,来定期同步MySQL和redis的数据。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/611685.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JS 监听网络状态

我们在开发过程中会遇到监听用户网络状态的需求,通过JS可以获取当前的网络状态,包括下载速度、网络延迟、网络在线状态、网络类型等信息 具体获取如下: let info navigator.connection console.log(info)可以看到,包含几个信息…

《系统架构设计师教程(第2版)》第4章-信息安全技术基础知识-03-访问控制及数字签名技术

文章目录 1. 访问控制技术1.1 基本模型1)访问控制模型访问控制的内容1.2 实现技术1)访问控制矩阵2)访问控制表3)能力表4)授权关系表2. 数字签名2.1 作用2.2 数字签名的条件2.2 对称密钥签名2.3 公开密钥签名1. 访问控制技术 1.1 基本模

Deployment 控制器

一、概述 Deployment是ReplicaSet的高级别抽象,ReplicaSet控制器有的功能Deployment全部具备,ReplicaSet没有的Deployment也具备比如,它提供了滚动升级和回滚的功能。Deployment是控制多个ReplicaSet,从而可以实现无缝升级和回滚。…

element plus el-form双列布局及拓展任意布局

1 场景 一般表单我们直接默认布局&#xff0c;也就是单列布局&#xff0c;突然有个人员信息表单&#xff0c;需要双列布局的需求&#xff0c;简单实现并拓展下 2 思路 直接无脑divflex布局实现 3 代码 <template><el-form ref"formRef" :model"fo…

Blazor 错误笔记

1. 运行时问题 Microsoft.NETCore.App.Runtime.Mono.browser-wasm Microsoft.NETCore.App.Runtime.Mono.browser-wasm 是一个 .NET Core 运行时的包&#xff0c;用于在浏览器中运行 .NET Core 应用程序。它是针对 WebAssembly 架构的 .NET Core 运行时&#xff0c;可以在浏览…

Java中CompletableFuture 异步编排的基本使用

一、前言 在复杂业务场景中&#xff0c;有些数据需要远程调用&#xff0c;导致查询时间缓慢&#xff0c;影响以下代码逻辑运行&#xff0c;并且这些浪费时间的逻辑与以后的请求并没有关系&#xff0c;这样会大大增加服务的时间。 假如商品详情页的每个查询&#xff0c;需要如下…

C //练习 5-2 模仿函数getint的实现方法,编写一个读取浮点数的函数getfloat。getfloat函数的返回值应该是什么类型?

C程序设计语言 &#xff08;第二版&#xff09; 练习 5-2 练习 5-2 模仿函数getint的实现方法&#xff0c;编写一个读取浮点数的函数getfloat。getfloat函数的返回值应该是什么类型&#xff1f; 注意&#xff1a;代码在win32控制台运行&#xff0c;在不同的IDE环境下&#xf…

书生·浦语第三次作业

我最近在参加书生浦语大模型实战营&#xff0c;这是第三次作业打卡&#xff01; 如果你也想两周玩转大模型微调&#xff0c;部署与测评全链路。报名链接&#xff1a;invite 书生浦语大模型实战营报名 邀请码可以填026014 一、基础作业&#xff1a;复现课程知识库助手搭建过程…

LC474. 一和零

代码随想录 class Solution {public int findMaxForm(String[] strs, int m, int n) {int [][] dp new int [m1][n1];int oneNum,zeroNum;for(String str : strs){oneNum 0 ;zeroNum 0;for(char ch : str.toCharArray()){if(ch 0){zeroNum ;}else{oneNum ;}}for(int i m …

WEB之HTML练习

第一题&#xff1a;用户注册界面 HTML代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><titl…

Java解决删除子串后的字符串最小长度

Java解决删除子串后的字符串最小长度 01 题目 给你一个仅由 大写 英文字符组成的字符串 s 。 你可以对此字符串执行一些操作&#xff0c;在每一步操作中&#xff0c;你可以从 s 中删除 任一个 "AB" 或 "CD" 子字符串。 通过执行操作&#xff0c;删除所…

【Python】使用tkinter设计开发Windows桌面程序记事本(2)

上一篇&#xff1a;【Python】使用tkinter设计开发Windows桌面程序记事本&#xff08;1&#xff09;-CSDN博客 下一篇&#xff1a; 作者发炎 此代码模块是继承上一篇文章的代码模块的基础上开始设计开发的。 如果不知道怎么新建"记事本项目"文件夹&#xff0c;请参…

第二百五十八回

文章目录 1. 概念介绍2. 思路与方法2.1 实现思路2.2 实现方法 3. 示例代码4. 内容总结 我们在上一章回中介绍了"模拟对话窗口的页面"相关的内容&#xff0c;本章回中将介绍如何创建一个可以输入内容的对话框.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念…

Rust 工作空间

Rust 第23节 工作空间 工作空间 当一个项目需要多个crate时&#xff0c;就会用到工作空间 先在空白目录下创建一个 Cargo.toml 这个Cargo.toml 就是对工作空间进行管理 写上属性 [workspace]members ["adders" ]比如一个二进制crate 写完之后在命令行创建它 同…

C++ 多态以及多态的原理

文章目录 多态的概念多态的构成条件虚函数的重写虚函数重写的两个例外 重载、重写(覆盖)、重定义(隐藏)对比C11 final 和 override关键字抽象类接口继承和普通继承多态的原理虚函数表多态的原理 单继承和多继承关系的虚函数表单继承中的虚函数表多继承中的虚函数表 多态的概念 …

Linux安装nginx并设置为开机自启动

1.更新gcc安装包 yum install -y gcc pcre-devel zlib-devel2.下载文件并解压 命令如下 wget https://nginx.org/download/nginx-1.18.0.tar.gz //解压nginx tar -zxvf nginx-1.18.0.tar.gz //进入后进行指定安装位置 ./configure --prefix/usr/local/nginx //安装 make &…

面试宝典之spring框架常见面试题

F1、类的反射机制有啥用&#xff1f; &#xff08;1&#xff09;增加程序的灵活性&#xff0c;可扩展性&#xff0c;动态创建对象。 &#xff08;2&#xff09;框架必备&#xff0c;任何框架的封装都要用反射。&#xff08;框架的灵魂&#xff09; F2、获取Class对象的三种方…

boost graph计算最短路径程序异常退出问题解决

之前使用的boost 1.55版本&#xff0c;升级使用1.73版本后&#xff0c;在调用dijkstra_shortest_paths时会出现弹窗 abort()has been called 点击调试&#xff0c;看调用栈信息&#xff0c;发现计算的距离值为负数。 刚开始时&#xff0c;距离初始值为numeric_limits<long&g…

小程序分销商城,打造高效线上购物体验

小程序商城系统&#xff0c;为您带来前所未有的在线购物体验。它不仅提供线上商城购物、在线下单、支付及配送等功能&#xff0c;还凭借其便捷性成为众多商家的首选。 想象一下&#xff0c;商家可以展示琳琅满目的商品&#xff0c;包括图片、文字描述、价格及库存等详尽信息。而…

说说java8新特性

java8新特性主要有&#xff1a;函数式接口、lambda表达式、Stream API、接口对于static方法和默认方法的支持。 一、函数式接口 函数式接口指的是只有一个抽象方法的接口&#xff0c;函数式接口用FunctionalInterface注解修饰&#xff0c;java中常用的函数式接口有Runnable、C…