Android学习(四):常用布局

Android学习(四):常用布局

五种常用布局

  • 线性布局:以水平或垂直方向排列
  • 相对布局:通过相对定位排列
  • 帧布局:开辟空白区域,帧里的控件(层)叠加
  • 表格布局:表格形式排列
  • 绝对布局:通过x,y坐标排列

1、线性布局

1.1、简介

线性布局(LinearLayout)主要以水平或垂直方式来显示界面中的控件。当控件水平排列时,显示顺序依次为从左到右,当控件垂直排列时,显示顺序依次为从上到下。

1.2、示例
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"android:layout_width="wrap_content"android:layout_height="wrap_content"android: orientation ="vertical">
</LinearLayout>   
1.3、注意事项
  • 当控件水平排列时,控件属性layout_width只能设置为wrap_content(包裹内容让当前控件根据控件内容大小自动伸缩),否则其余控件会被挤出屏幕右侧不显示。同理,如果控件垂直排列也会出现同样情况。
  • 当控件水平排列时,如果控件未占满一行,会留有空白区域,这样既不美观又浪费空间。此时,可以利用layout_weight属性解决这个问题,该属性被称为权重,通过比例调整布局中所有控件的大小。

2、相对布局

2.1、简介
  • 相对布局(RelativeLayout)是通过相对定位的方式指定控件位置,即以其它控件或父容器为参照物,摆放控件位置。
  • 在设计相对布局时要遵循控件之间的依赖关系,后放入控件的位置依赖于先放入的控件。
2.2、示例
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"android:layout_width="match_parent" android:layout_height="match_parent">
</RelativeLayout>

控件位置属性:

在这里插入图片描述
在这里插入图片描述

控件内边距属性:

在这里插入图片描述

3、帧布局

3.1、简介
  • 帧布局(FrameLayout)为每个加入其中的控件创建一个空白区域(称为一帧,每个控件占据一帧)。
  • 所有控件都默认显示在屏幕左上角,按照先后放入的顺序重叠摆放。帧布局的大小由内部最大控件的决定。
3.2、示例
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"android:layout_width="match_parent" android:layout_height="match_parent">
</FrameLayout>

4、表格布局

4.1、简介
  • 表格布局(TableLayout)是以表格形式排列控件的,通过行和列将界面划分为多个单元格,每个单元格都可以添加控件。
  • 表格布局需要和TableRow配合使用,每一行都由TableRow对象组成,因此TableRow的数量决定表格的行数。而表格的列数是由包含最多控件的TableRow决定的,例如第1个TableRow有两个控件,第2个TableRow有三个控件,则表格列数为3。
4.2、示例
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"android:layout_width="match_parent" android:layout_height="match_parent">
</TableLayout>

表格布局属性:

在这里插入图片描述

表格布局控件属性:

在这里插入图片描述

5、绝对布局

5.1、简介

绝对布局(AbsoluteLayout)是通过指定x、y坐标来控制每一个控件位置的。

5.2、示例
<AbsoluteLayout xmlns:android="http://schemas.android.com/apk/res/android"android:layout_width="match_parent" android:layout_height="match_parent">
</AbsoluteLayout>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/611465.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索渡边赤池信息准则 (WAIC):统计模型选择的范式转变

一、介绍 在不断发展的统计建模和机器学习领域&#xff0c;寻求最佳模型选择仍然是一个基石。渡边-赤池信息准则 (WAIC) 作为贝叶斯分析的重要工具而出现&#xff0c;为模型评估提供了全新的视角。本文旨在揭示 WAIC 的细微差别&#xff0c;探讨其方法、意义、优势和潜在局限性…

C++内存管理机制(侯捷)笔记1

C内存管理机制&#xff08;侯捷&#xff09; 本文是学习笔记&#xff0c;仅供个人学习使用。如有侵权&#xff0c;请联系删除。 参考链接 Youtube: 侯捷-C内存管理机制 Github课程视频、PPT和源代码: https://github.com/ZachL1/Bilibili-plus 第一讲primitives的笔记 截至…

Python 基础(四):序列

目录 简介2 基本使用2.1 索引2.2 切片2.3 相加2.4 相乘2.5 元素是否在序列中2.6 内置函数 简介 Python 中的序列是一块可存放多个值的连续内存空间&#xff0c;所有值按一定顺序排列&#xff0c;每个值所在位置都有一个编号&#xff0c;称其为索引&#xff0c;我们可以通过索引…

HTTP介绍

目录 HTTP介绍 1、HTTP 工作原理 2、HTTP 消息结构 3、客户端请求消息 4、服务器响应消息 5、HTTP 请求方法 6、HTTP 响应头信息 7、HTTP 状态码 HTTP介绍 1、HTTP 工作原理 HTTP协议工作于客户端-服务端架构上。浏览器作为HTTP客户端通过URL向HTTP服务端即WEB服务器发…

轻松get压力测试指南

身为后端程序员怎么也要会一点压力测试相关的技术吧, 不然无脑上线项目万一项目火了进来大量请求时出现程序执行缓慢, 宕机等情况你肯定稳稳背锅, 而且这个时候短时间内还没办法解决, 只能使用物理扩容CPU, 内存, 更换网络等几种方式来解决问题, 妥妥的为公司增加支出好吧, 下一…

‘再战千问:启程你的提升之旅‘,如何更好地提问?

例如&#xff0c;很多时候我们提出一些问题&#xff0c;然而通义千问提供的答案&#xff0c;并非完全符合我们的期望。这并非由于通义千问的智能程度不足&#xff0c;而是提问者的“提问技巧”尚未掌握得当。 难道提问还需要讲究艺术性吗&#xff1f;确实如此。今天&#xff0c…

[后端] 微服务的前世今生

微服务的前世今生 整体脉络: 单体 -> 垂直划分 -> SOA -> micro service 微服务 -> services mesh服务网格 -> future 文章目录 微服务的前世今生单一应用架构特征优点&#xff1a;缺点&#xff1a; 垂直应用架构特征优点缺点 SOA 面向服务架构特征优点缺点 微服…

2024年中国杭州|网络安全技能大赛(CTF)正式开启竞赛报名

前言 一、CTF简介 CTF&#xff08;Capture The Flag&#xff09;中文一般译作夺旗赛&#xff0c;在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式。CTF起源于1996年DEFCON全球黑客大会&#xff0c;以代替之前黑客们通过互相发起真实攻击进行技术比拼的…

生成式人工智能市场规模、趋势和统计数据(2024-2026)

生成式人工智能市场规模、趋势和统计数据&#xff08;2024-2026&#xff09; 目录 生成式人工智能市场规模、趋势和统计数据&#xff08;2024-2026&#xff09;一、生成式人工智能行业亮点二、生成式人工智能市场规模三、生成式人工智能市场增长预测四、生成式人工智能采用统计…

Linux信号处理浅析

一、信号从发送到被处理经历的过程 1、常见概念 (1) 信号阻塞 阻塞&#xff0c;即被进程拉黑&#xff0c;信号被发送后&#xff0c;分为两种情况&#xff0c;一种是被阻塞了&#xff08;被拉黑了&#xff09;&#xff0c;一种是没有被阻塞。 (2) 信号未决 在信号被进程处理…

RT-Thread:SPI万能驱动 SFUD 驱动Flash W25Q64,通过 STM32CubeMX 配置 STM32 SPI 驱动

关键词&#xff1a;SFUD,FLASH,W25Q64&#xff0c;W25Q128&#xff0c;STM32F407 说明&#xff1a;RT-Thread 系统 使用 SPI万能驱动 SFUD 驱动 Flash W25Q64&#xff0c;通过 STM32CubeMX 配置 STM32 SPI 驱动。 提示&#xff1a;SFUD添加后的存储位置 1.打开RT-Thread Sett…

K8S的部署策略,重建更新和滚动更新

Deployment Strategies 部署战略 When it comes time to change the version of software implementing your service, a Kubernetes deployment supports two different rollout strategies: RecreateRollingUpdate 当需要更改实施服务的软件版本时&#xff0c;Kubernetes …

跟着我学Python进阶篇:02.面向对象(上)

往期文章 跟着我学Python基础篇&#xff1a;01.初露端倪 跟着我学Python基础篇&#xff1a;02.数字与字符串编程 跟着我学Python基础篇&#xff1a;03.选择结构 跟着我学Python基础篇&#xff1a;04.循环 跟着我学Python基础篇&#xff1a;05.函数 跟着我学Python基础篇&#…

Linux C/C++ 显示NIC流量统计信息

NIC流量统计信息是由操作系统维护的。当数据包通过NIC传输时&#xff0c;操作系统会更新相关的计数器。这些计数器记录了数据包的发送和接收数量、字节数等。通过读取这些计数器&#xff0c;我们可以获得关于网络流量的信息。 为什么需要这些信息? 可以使用这些信息来监控网络…

Java建筑工程建设智慧工地源码

智慧工地管理平台依托物联网、互联网&#xff0c;建立云端大数据管理平台&#xff0c;形成“端云大数据”的业务体系和新的管理模式&#xff0c;从施工现场源头抓起&#xff0c;最大程度的收集人员、安全、环境、材料等关键业务数据&#xff0c;打通从一线操作与远程监管的数据…

C++11_lambda表达式

文章目录 一、lambda表达式1.lambda的组成2.[capture-list] 的其他使用方法2.1混合捕捉 二、lambda表达式的使用场景1.替代仿函数 总结 一、lambda表达式 lambda表达式是C11新引入的功能&#xff0c;它的用法与我们之前学过的C语法有些不同。 1.lambda的组成 [capture-list] …

【C++进阶05】AVL树的介绍及模拟实现

一、AVL树的概念 二叉搜索树的缺点 二叉搜索树虽可以缩短查找效率 但如果数据有序或接近有序 二叉搜索树将退化为单支树 查找元素相当于在顺序表中搜索元素&#xff0c;效率低下 AVL树便是解决此问题 向二叉搜索树中插入新结点 并保证每个结点的左右子树 高度之差的绝对值不超…

Java诊断利器Arthas

https://arthas.aliyun.com/doc/https://arthas.aliyun.com/doc/ 原理 利用java.lang.instrument(容器类) 做动态 Instrumentation(执行容器) 是 JDK5 的新特性。使用 Instrumentation&#xff0c;开发者可以构建一个独立于应用程序的代理程序&#xff08;Agent&#xff09;&…

汽车IVI中控开发入门及进阶(十二):手机投屏

前言: 汽车座舱有车载中控大屏、仪表/HUD多屏的显示能力,有麦克风/喇叭等车载环境更好的音频输入输出能力,有方控按键、旋钮等方便的反向控制输入能力,还有高精度的车辆数据等。但汽车座舱中控主机硬件计算能力升级迭代周期相对较长,汽车的应用和服务不够丰富。现在很多汽…

.NetCore部署微服务(二)

目录 前言 概念 一 Consul注册服务中心 1.1 consul下载 1.2 consul运行 二 服务注册 2.1 安装Consul包 2.2 修改配置文件 2.3 注入Consul服务 2.3 修改Controller&#xff0c;增加HealthCheck方法 三 运行服务 3.1 docker运行服务 前言 上一篇讲到微服务要灵活伸缩…