‘再战千问:启程你的提升之旅‘,如何更好地提问?

例如,很多时候我们提出一些问题,然而通义千问提供的答案,并非完全符合我们的期望。这并非由于通义千问的智能程度不足,而是提问者的“提问技巧”尚未掌握得当。

难道提问还需要讲究艺术性吗?确实如此。今天,我们将为大家介绍一个关键概念——Prompt Engineering,即“提示词工程”。

那么,什么是提示词工程(Prompt Engineering)呢?它是指在与AI模型交互时,用户所提供的输入文本,这些文本旨在引导AI模型生成特定类型的精准输出内容。这里的输入可以是具体的问题表述、任务描述或情境描绘。

向AI模型提问或者下达指令,就如同与人交流一样,提问者首先需要确保问题表述清晰明了。如果问题阐述得模糊不清,即便是最顶尖的专家也无法给出你所期待的答案。

下面两个例子,就是提示词的错误示例:

很明显这并不是我想要的答案,我明明想要一 giao 我里 giao giao,因为问题并没有表述清楚,结果给我初始了一个rapper的角色其实可以看到他已经自由发挥了,同样也没描述清楚具体的一些细节,

因此,为了确保AI模型能够提供更为精确的答案,我们有必要掌握一系列针对AI的提问策略和技术,而这一整套策略和技术体系即所谓的“提示词工程”。在ChatGPT的应用中,提示词工程扮演着不可或缺的核心角色,它负责将用户的需求翻译成GPT模型可以有效理解和响应的语言结构。通过精心设计和运用恰当的提示词,我们可以有效地引导GPT模型生成既具有针对性又高质量的回复内容。故此,深入学习并熟练应用提示词技术是充分挖掘ChatGPT潜能的关键,有助于满足各种不同场景下的应用需求。

那么,如何开启对提示词工程的学习之旅呢?

初步涉足提示词工程领域,首要任务是对提示词的各种类型有一个全面的认识。当前,在实践中广泛采用的提示词主要分为六大类别。

1.信息检索类Prompt

向ChatGPT询问某些固有的知识,比如这样输入:“新中国成立时间”

2.文本生成类Prompt

根据特定要求来生成文本,比如这样输入:"我彩票中了一个亿,我不想干了,请向我的领导写一封离职信,要求字数在300字以内”

3.机器翻译类Prompt

给定某一种语言的内容,翻译成另一种语言,比如这样输入:"请将'I'm Iron Man翻译成中文。”

4.创意写作类Prompt

提出具有开放性的要求,比如这样输入:“写一个以美国南北战净为历史背景的短篇爱情小说,要求字数2000字以内。“

(截取了部分)

5.文本摘要类Prompt

指定一篇文章,提炼出文章的核心要点,比如这样输入:"请为上面的输出总结出一个50字的摘要"

6.咨询建议类Prompt

列举现实情况,提出咨询建议,比如这样输入:“我是一个00后北漂,我喜欢rapper,我应该如何学习?”

上述内容仅列举了提示词的一些常见类型。然而,要有效地提出优质问题,首要步骤是明确你所使用的提示词类别,这样才能做到精准定位,如同对症下药般解决问题。

一个真正高质量的提示词,应当具备三大要素:首先,目标指向必须清晰明了;其次,应具有特定的前提条件设定;最后,需对回答的形式和范围做出明确限定。

想要满足这些要求,你的Prompt需要包含四大组成部分,分别是任务、上下文、指令、角色。

1.任务(Task)

所谓任务,是指用户期望模型执行的具体事务,这可能包括解答疑问、提出指导性意见等内容。

2.上下文(Context)

有助于模型更好地掌握任务的上下文信息,这包括但不限于相关领域的专业知识、具体的应用场景等元素。

3.指令(Instruction)

具体要求包括但不限于按照特定方式引导模型完成任务,例如规定答案的格式、确定回答的深度等。

4.角色(Role)

在互动流程中,为模型预设一个身份角色,例如专家、助手等,使其能够在交流中发挥作用。

对于这四个组成部分,我们来举一个应用的例子。输入内容:作为一个项目经理,你的项目组成员因工资待遇要求离职,请给出有效的解决办法,解决方法列举5条以上,总字数在200-300之间,

任务部分是“给出有效的解决方法”

上下文部分是“你的项目组成员因工资待遇要求离职“

指令部分是“解决方法列举5条以上,总字数在200-300字之间。”

角色:项目经理

这样的提示词就是一个清晰完整的提示词,大概率可以给出你准确而又有价值的回答。

针对这个问题,回答如下:

当然,也并非每一个问题都一定要严格包含着四大要素,只有在希望生成较为复杂和专业的内容时,才需要兼备这些要素。

以上是实现优质提示词的基本要求。此外针对一些特殊场景,我们也需要用到几种提示词的高级技巧。

都有哪些提示词的高级技巧呢?在下一讲我会为大家详细说明,敬请期待。

欢迎大家围观,

想学习更多AI技能,比如说利用AI提高生产力,或者做一些副业都可以联系我,入局AI 共同成长。关注公众号发送【ChatGPT资料】领取ChatGPT全套资料、提示词。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/611449.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[后端] 微服务的前世今生

微服务的前世今生 整体脉络: 单体 -> 垂直划分 -> SOA -> micro service 微服务 -> services mesh服务网格 -> future 文章目录 微服务的前世今生单一应用架构特征优点:缺点: 垂直应用架构特征优点缺点 SOA 面向服务架构特征优点缺点 微服…

2024年中国杭州|网络安全技能大赛(CTF)正式开启竞赛报名

前言 一、CTF简介 CTF(Capture The Flag)中文一般译作夺旗赛,在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式。CTF起源于1996年DEFCON全球黑客大会,以代替之前黑客们通过互相发起真实攻击进行技术比拼的…

生成式人工智能市场规模、趋势和统计数据(2024-2026)

生成式人工智能市场规模、趋势和统计数据(2024-2026) 目录 生成式人工智能市场规模、趋势和统计数据(2024-2026)一、生成式人工智能行业亮点二、生成式人工智能市场规模三、生成式人工智能市场增长预测四、生成式人工智能采用统计…

Linux信号处理浅析

一、信号从发送到被处理经历的过程 1、常见概念 (1) 信号阻塞 阻塞,即被进程拉黑,信号被发送后,分为两种情况,一种是被阻塞了(被拉黑了),一种是没有被阻塞。 (2) 信号未决 在信号被进程处理…

RT-Thread:SPI万能驱动 SFUD 驱动Flash W25Q64,通过 STM32CubeMX 配置 STM32 SPI 驱动

关键词:SFUD,FLASH,W25Q64,W25Q128,STM32F407 说明:RT-Thread 系统 使用 SPI万能驱动 SFUD 驱动 Flash W25Q64,通过 STM32CubeMX 配置 STM32 SPI 驱动。 提示:SFUD添加后的存储位置 1.打开RT-Thread Sett…

K8S的部署策略,重建更新和滚动更新

Deployment Strategies 部署战略 When it comes time to change the version of software implementing your service, a Kubernetes deployment supports two different rollout strategies: RecreateRollingUpdate 当需要更改实施服务的软件版本时,Kubernetes …

跟着我学Python进阶篇:02.面向对象(上)

往期文章 跟着我学Python基础篇:01.初露端倪 跟着我学Python基础篇:02.数字与字符串编程 跟着我学Python基础篇:03.选择结构 跟着我学Python基础篇:04.循环 跟着我学Python基础篇:05.函数 跟着我学Python基础篇&#…

Linux C/C++ 显示NIC流量统计信息

NIC流量统计信息是由操作系统维护的。当数据包通过NIC传输时,操作系统会更新相关的计数器。这些计数器记录了数据包的发送和接收数量、字节数等。通过读取这些计数器,我们可以获得关于网络流量的信息。 为什么需要这些信息? 可以使用这些信息来监控网络…

Java建筑工程建设智慧工地源码

智慧工地管理平台依托物联网、互联网,建立云端大数据管理平台,形成“端云大数据”的业务体系和新的管理模式,从施工现场源头抓起,最大程度的收集人员、安全、环境、材料等关键业务数据,打通从一线操作与远程监管的数据…

C++11_lambda表达式

文章目录 一、lambda表达式1.lambda的组成2.[capture-list] 的其他使用方法2.1混合捕捉 二、lambda表达式的使用场景1.替代仿函数 总结 一、lambda表达式 lambda表达式是C11新引入的功能,它的用法与我们之前学过的C语法有些不同。 1.lambda的组成 [capture-list] …

【C++进阶05】AVL树的介绍及模拟实现

一、AVL树的概念 二叉搜索树的缺点 二叉搜索树虽可以缩短查找效率 但如果数据有序或接近有序 二叉搜索树将退化为单支树 查找元素相当于在顺序表中搜索元素,效率低下 AVL树便是解决此问题 向二叉搜索树中插入新结点 并保证每个结点的左右子树 高度之差的绝对值不超…

Java诊断利器Arthas

https://arthas.aliyun.com/doc/https://arthas.aliyun.com/doc/ 原理 利用java.lang.instrument(容器类) 做动态 Instrumentation(执行容器) 是 JDK5 的新特性。使用 Instrumentation,开发者可以构建一个独立于应用程序的代理程序(Agent)&…

汽车IVI中控开发入门及进阶(十二):手机投屏

前言: 汽车座舱有车载中控大屏、仪表/HUD多屏的显示能力,有麦克风/喇叭等车载环境更好的音频输入输出能力,有方控按键、旋钮等方便的反向控制输入能力,还有高精度的车辆数据等。但汽车座舱中控主机硬件计算能力升级迭代周期相对较长,汽车的应用和服务不够丰富。现在很多汽…

.NetCore部署微服务(二)

目录 前言 概念 一 Consul注册服务中心 1.1 consul下载 1.2 consul运行 二 服务注册 2.1 安装Consul包 2.2 修改配置文件 2.3 注入Consul服务 2.3 修改Controller,增加HealthCheck方法 三 运行服务 3.1 docker运行服务 前言 上一篇讲到微服务要灵活伸缩…

「超级细菌」魔咒或将打破,MIT 利用深度学习发现新型抗生素

作者:加零 编辑:李宝珠、三羊 MIT 利用图神经网络 Chemprop 识别潜在抗生素,特异性杀死鲍曼不动杆菌。 自然界中充满了各种各样的微生物,例如结核杆菌(导致肺结核)、霍乱弧菌(导致霍乱&#…

数据结构实验4:链表的基本操作

目录 一、实验目的 二、实验原理 1. 节点 2. 指针 3.链表的类型 3.1 单向链表 3.2 双向链表 3.3 单向循环链表 3.4 双向循环链表 4. 单链表的插入 4.1 头插法 4.2 尾插法 4.3 在指定位置插入元素 5. 单链表的删除 5.1 删除指定数值的节点 5.2 删除指定位置的节点 …

Pytorch从零开始实战16

Pytorch从零开始实战——ResNeXt-50算法的思考 本系列来源于365天深度学习训练营 原作者K同学 对于上次ResNeXt-50算法,我们同样有基于TensorFlow的实现。具体代码如下。 引入头文件 import numpy as np from tensorflow.keras.preprocessing.image import Ima…

TensorRt(5)动态尺寸输入的分割模型测试

文章目录 1、固定输入尺寸逻辑2、动态输入尺寸2.1、模型导出2.2、推理测试2.3、显存分配问题2.4、完整代码 这里主要说明使用TensorRT进行加载编译优化后的模型engine进行推理测试,与前面进行目标识别、目标分类的模型的网络输入是固定大小不同,导致输入…

【现代密码学】笔记3.4-3.7--构造安全加密方案、CPA安全、CCA安全 《introduction to modern cryphtography》

【现代密码学】笔记3.4-3.7--构造安全加密方案、CPA安全、CCA安全 《introduction to modern cryphtography》 写在最前面私钥加密与伪随机性 第二部分流加密与CPA多重加密 CPA安全加密方案CPA安全实验、预言机访问(oracle access) 操作模式伪随机函数PR…

Java微服务系列之 ShardingSphere - ShardingSphere-JDBC

🌹作者主页:青花锁 🌹简介:Java领域优质创作者🏆、Java微服务架构公号作者😄 🌹简历模板、学习资料、面试题库、技术互助 🌹文末获取联系方式 📝 系列专栏目录 [Java项…