[Linux进程(一)] 什么是进程?PCB的底层是什么?以及进程标识符pid与ppid

在这里插入图片描述

文章目录

  • 1、前言
  • 2、描述进程 — PCB(os怎么管理进程呢)
  • 3、查看进程
    • 3.1 方法一
    • 3.2 方法二
  • 4、系统调用获取进程标示符(PID)
    • 4.1 获取进程的ID
    • 4.2 获取进程的父进程ID
  • 5、系统调用创建子进程-fork

1、前言

大家经常都在讲进程,而它到底是什么呢?
这里给大家先简单的介绍一下:

  • 课本概念:程序的一个执行实例,正在执行的程序等。
  • 内核观点:担当分配系统资源(CPU时间,内存)的实体。

2、描述进程 — PCB(os怎么管理进程呢)

在操作系统中我们说到,os管理的本质并不是对事物本体的管理,而是对数据的管理。
这里虽然我们并不知道进程是什么,但是按照上面的理解,我们对进程的管理,也是对进程的数据进行管理,这里就用到那六个字“先描述,再组织”。我们来画图理解一下:
在这里插入图片描述
操作系统可能会同时管理非常多的“进程”,因此在管理的时候,管理这些进程的数据即可,将这些进程共有的属性提取出来,用结构体将其存起来,再使用链表将其链接起来,这样就能有效的管理进程,这样的机制就叫做“先描述,再组织”。
这个进程属性的集合就叫做PCB,也叫做进程控制块。
PCB是一个统称,在Linux中,PCB叫做 task_struct。
最终,我们操作系统对PCB的管理就被建模成了对链表的增删查改。
我们得出:进程 = 可执行程序 + 内核数据结构

3、查看进程

3.1 方法一

在Linux下我们可以使用下面的这个命令来查看进程:

ps ajx

在这里插入图片描述
这是所有的进程,如果我们只是对其中一个进程查看呢?我们看下面的:
我们先写一段C语言程序,编译为可执行程序并执行,然后使用该命令来查看一下进程:

#include <stdio.h>
#include <unistd.h>int main()
{while(1){printf("我是一个进程\n");sleep(1);}return 0;
}

在这里插入图片描述
命令:

ps ajx | grep mycode

这里用到我们以前学到的 管道符与过滤,筛选出我们想找的进程。

3.2 方法二

我们可以通过根目录下的proc目录来查看。proc目录下保存有进程的信息。
在这里插入图片描述

proc目录下的蓝色数字就是每一个进程的pid(Process ID),这就跟我们的身份证号一样,一人只有一个,每个进程都只有这么一个标识符。
我们再次以刚才那段C语言为例,来查看进程:
在这里插入图片描述
在这里插入图片描述
如果我们删掉磁盘上可执行程序,进程没有终止的话,我们仍然是可以查到的,因为进程是程序拷贝到内存中的,代码+数据都被拷贝下来了,所以删掉磁盘上的可执行程序不会影响的。
在这里插入图片描述
当终止掉程序,内存中拷贝的可执行程序与数据都被释放掉了,因此再去查就查不出来了。
在这里插入图片描述

4、系统调用获取进程标示符(PID)

  • 进程id(PID)
  • 父进程id(PPID)
    我们在上面使用 ps ajx 命令的时候发现,有一个PID,还有一个PPID,我们不难猜到,这些都是PCB中的属性。
    如果获取呢?这里要介绍我们第一个要学习系统调用,getpid与getppid了。我们使用man手册查一下看看怎么说。
    在这里插入图片描述
    我们接下来就使用getpid与getppid系统调用接口来看看能不能查到pid与ppid。

4.1 获取进程的ID

这里我们写一段C语言程序来调用看看:

#include <stdio.h>                     
#include <sys/types.h>                  
#include <unistd.h>                    int main()                                                                          
{                                                                                   while(1)                                                                        {                                                                               printf("我是一个进程,pid = %d\n", getpid());                                                                            sleep(1);                                                          }return 0;                       
} 

编译后我们运行可执行程序,并使用下面 ps ajx 命令来对比看,pid是否正确。

ps ajx | head -1 && ps ajx | grep mycode | grep -v grep

在这里插入图片描述
我们发现,getpid确实是没错的,并且我们调用是没有出错的。
当我们想要终止掉一个进程的时候,我们总是用 ctrl + c,今天我们再来学一个终止命令,kill 命令。

kill -9 pid  // 这里的9是9号信号

在这里插入图片描述

4.2 获取进程的父进程ID

我们继续改写上面的C语言代码,再来看看 getppid() 系统调用接口。

#include <stdio.h>                     
#include <sys/types.h>                  
#include <unistd.h>                    int main()                                                                          
{                                                                                   while(1)                                                                        {                                                                               printf("我是一个进程,pid = %d, ppid = %d\n", getpid(), getppid());                                                                            sleep(1);                                                          }return 0;                       
} 

在这里插入图片描述
经过我的不断调用发现,每次运行pid都是在变化的,但是ppid确实一直没有变化,我猜它是一直在运行的,我们来查看一下它是谁。
在这里插入图片描述
原来它是命令行解释器 bash 呀。我们由此也知道了,我们所敲出来的命令都是 bash 的子进程。
那我们Linu下有没有创建子进程的系统接口呢,有,我们再来学一下。

5、系统调用创建子进程-fork

我们可以使用fork创建子进程,先查一下man手册看看:
在这里插入图片描述
我们写一份 C语言代码来试着调用系统接口 fork()。
我们先想一下,我们有自己的进程为什么还要去创建子进程呢?
在上面的学习我们看到,我们输入的命令是执行命令得到结果,而父进程bash是解释你所输入的命令,这就说明,我们父子进程各自做各自的事。由此,我们想是不是可以,按照fork的返回值配合 if-else 语句来执行不同的事。我们试一下:

#include <stdio.h>
#include <unistd.h>int main()
{printf("我是一个父进程,我的pid:%d\n", getpid());pid_t id = fork();// fork之后用if分流if(id < 0) return -1;else if(id == 0){// childwhile(1){                printf("我是子进程,pid:%d, ppid:%d\n", getpid(), getppid());sleep(1);                                                             }}else {// parentwhile(1){printf("我是父进程,pid:%d, ppid:%d\n", getpid(), getppid());sleep(1);}}return 0;
}

我们编译后运行可执行程序。
在这里插入图片描述

通过打印出来的结果,我们发现刚我们的猜测是正确的!!!
这里我们可以总结出几个问题,对fork作以总结:
1、fork干了什么事情?
调用fork()后,创建了子进程,父子进程可以协作,干不同的事。
2、为什么fork会有两个返回值?
我们在查文档的时候,就有返回值的介绍。
成功时,给父进程返回子进程的pid,给子进程返回0;失败时,给父进程返回-1,不创建子进程。
fork之后代码共享,fork函数执行两次就有两个返回值,一次返回父进程接收,另外一次返回子进程接收。
3、为什么fork的两个返回值,会给父进程返回子进程pid,给子进程返回0?
我们与现实生活联系起来。现实中,父 : 子 = 1 : n(n >= 1),父亲给孩子不同名字,可以更好的区分孩子(保证唯一性)。这样类比到这里,给父进程返回子进程的pid,父进程必须有标识子进程的方式,而子进程只需要知道自己是否被创建成功,以及知道父进程是谁即可 (调用 getppid())。
4、fork之后谁先运行?
我们上面运行了可执行程序后,发现先跑了父进程的代码片段,然后跑子进程的代码片段,但是后面并不是这样的规律。
当创建完子进程后,系统的其他进程,以及父进程和子进程都要被调度。父子进程的PCB都被创建并在运行队列中排队,哪个进程的PCB先被调度,哪个进程就先被运行,是由操作系统决定的,不确定的。
5、如何理解同一个id变量,怎么会有不同的值?
当父子进程都被运行时,他们共用一份代码与数据,但是一旦发生数据的写入,就会发生写时拷贝,数据就不再共享,而是父子进程各一份自己的数据,因此就会出现同一个变量,值不相同。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/610998.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android逆向学习(六)绕过app签名校验,通过frida,io重定向(上)

Android逆向学习&#xff08;六&#xff09;绕过app签名校验&#xff0c;通过frida&#xff0c;io重定向&#xff08;上&#xff09; 一、写在前面 这是吾爱破解正己大大教程的第五个作业&#xff0c;然后我的系统还是ubuntu&#xff0c;建议先看一下上一个博客&#xff0c;关…

Zookeeper设计理念与源码剖析

Zookeeper 架构理解 整体架构 Follower server 可以直接处理读请求&#xff0c;但不能直接处理写请求。写请求只能转发给 leader server 进行处理。最终所有的写请求在 leader server 端串行执行。&#xff08;因为分布式环境下永远无法精确地确认不同服务器不同事件发生的先后…

逐步分解,一文教会你如何用 jenkins+docker 实现主从模式

jenkins 主从模式想必大家都不陌生&#xff0c;大家在学习过程中为了学习方便都在自己本地搭建了 jenkins 环境&#xff0c;然后通过 javaweb 方式实现&#xff0c;对于 docker 下实现主从模式大家好像兴趣挺大。 今天就通过这篇文章给大家讲讲怎么玩&#xff0c;希望对大家有帮…

Vivado开发FPGA使用流程、教程 verilog(建立工程、编译文件到最终烧录的全流程)

目录 一、概述 二、工程创建 三、添加设计文件并编译 四、线上仿真 五、布局布线 六、生成比特流文件 七、烧录 一、概述 vivado开发FPGA流程分为创建工程、添加设计文件、编译、线上仿真、布局布线&#xff08;添加约束文件&#xff09;、生成比特流文件、烧录等步骤&a…

交叉编译ARM64架构electron详解

基本介绍 本文主要参考Electron官方文档中 构建说明 和 构建步骤(Linux) 在amd64环境内构建arm64的electron包。 如果是arm64环境请查看文章arm64架构编译electron长征路 一、环境说明 操作系统版本:统信1060 操作系统架构:amd64 内存:32G 如下图: electron版本:v25…

企业微信forMAC,如何左右翻动预览图片

1、control commandshifd 进入企业微信的debug调试模式 2、按照如下步骤选择 3、重启企业微信

【K8S 存储卷】K8S的存储卷+PV/PVC

目录 一、K8S的存储卷 1、概念&#xff1a; 2、挂载的方式&#xff1a; 2.1、emptyDir&#xff1a; 2.2、hostPath&#xff1a; 2.3、NFS共享存储&#xff1a; 二、PV和PVC&#xff1a; 1、概念 2、请求方式 3、静态请求流程图&#xff1a; 4、PV和PVC的生命周期 5、…

基于ubuntu2204使用kubeadm部署k8s集群

部署k8s集群 基础环境配置安装container安装runc安装CNI插件部署1.24版本k8s集群&#xff08;flannel&#xff09;安装crictl使用kubeadm部署集群节点加入集群部署flannel网络配置dashboard 本集群基于ubuntu2204系统使用kubeadm工具部署1.24版本k8s&#xff0c;容器运行时使用…

Unity | Shader基础知识(第九集:shader常用单词基础知识速成)

目录 一、顶点&#xff08;Vertex&#xff09;和法线(Normal) 二、UV信息 三、 基础数据种类 1 基础数据种类 2 基础数据数组 3 基础数据数组的赋值 4 对数据数组的调用 四、 基础矩阵 1 基础矩阵种类 2 对矩阵数组的调用 2.1对一个数据的调用 2.2对多个数据的调用 2…

机器之心 AI 技术--人工智能助力个性化视频实战经验分享(文末送书)

【清华社&机器之心】视频生成前沿研究与应用特别活动 在视频生成即将迎来技术和应用大爆发之际&#xff0c;为了帮助企业和广大从业者掌握技术前沿&#xff0c;把握时代机遇&#xff0c;机器之心AI论坛就将国内的视频生成技术力量齐聚一堂&#xff0c;共同分享国内顶尖力量…

华为云AI:轻松实现图像识别调用

文章目录 前言一、环境配置关键步骤 二、图像识别实例媒资图像标签名人识别 总结 前言 基于华为云AI服务和java使用SDK实现图像识别&#xff0c;主要以媒资图像标签和名人识别为例。 一、环境配置 Maven&#xff08;没有直接下载华为的SDK包&#xff0c;而是使用Maven安装依赖…

韩语翻译是怎么收费的

近年来&#xff0c;随着中韩交流的日益密切&#xff0c;韩语翻译在国内的需求呈现出不断增长的态势。无论是韩语笔译还是口译&#xff0c;其应用领域都非常广泛。那么&#xff0c;韩语翻译的价格是否高昂&#xff1f;翻译公司又是如何进行报价的呢&#xff1f; 在翻译领域&…

C2-3.3.2 机器学习/深度学习——数据增强

C2-3.3.2 数据增强 参考链接 1、为什么要使用数据增强&#xff1f; ※总结最经典的一句话&#xff1a;希望模型学习的更稳健 当数据量不足时候&#xff1a; 人工智能三要素之一为数据&#xff0c;但获取大量数据成本高&#xff0c;但数据又是提高模型精度和泛化效果的重要因…

UCF101 数据集介绍与下载

一、介绍 UCF101 是一个现实动作视频的动作识别数据集&#xff0c;收集自YouTube&#xff0c;提供了来自101个动作类别的13320个视频。官方&#xff1a;https://www.crcv.ucf.edu/research/data-sets/ucf101/ 数据集名称&#xff1a;UCF-101&#xff08;2012&#xff09; 总视…

06、Kafka ------ 各个功能的作用解释(ISR 同步副本、非同步副本、自动创建主题、修改主题、删除主题)

目录 CMAK 各个功能的作用解释★ ISR副本 (同步副本&#xff09;★ 非同步副本★ 自动创建主题★ 修改主题★ 删除主题 CMAK 各个功能的作用解释 ★ ISR副本 (同步副本&#xff09; 简单来说 &#xff0c;ISR 副本 就是 Kafka 认为与 领导者副本 同步的副本。 ISR&#xff0…

双位置继电器DLS-5/2TH 额定电压:110VDC 触点形式:7开3闭 柜内安装

系列型号&#xff1a; DLS-5/1电磁式双位置继电器; DLS-5/2电磁式双位置继电器; DLS-5/3电磁式双位置继电器; DLS-5/2G电磁式双位置继电器; DLS-5/3 220VDC双位置继电器 一、用途 1.1用途 DLS-5双位置继电器(以下简称产品)用于各种保护与自动控制系统中&#xff0c;作为切换…

JPEG格式详解Baseline、Progressive的区别

文章目录 JPEG的简介压缩质量/压缩比率色彩空间基线和渐进子采样存储选项 基线和渐进基线格式渐进格式&#xff1a; 子采样4:4:4&#xff08;无损&#xff09;4:2:24:2:0 JPEG的简介 JPEG&#xff08;Joint Photographic Experts Group&#xff09;是一种常见的图像压缩格式&a…

SpringBoot 配置文件加载优先级

SpringBoot 配置文件加载优先级 前言SpringBoot 配置文件加载优先级 前言 最近在使用k8s部署项目的时候,发现Dockerfile文件中的命令后面跟的参数,无法覆盖nacos中的参数,今天有时间正好来整理一下Springboot配置的加载顺序 SpringBoot 配置文件加载优先级 整理加载顺序第一个肯…

电子学会C/C++编程等级考试2023年12月(一级)真题解析

C/C++编程(1~8级)全部真题・点这里 第1题:数的输入和输出 输入一个整数和双精度浮点数,先将浮点数保留2位小数输出,然后输出整数。 时间限制:1000 内存限制:65536 输入 一行两个数,分别为整数N(不超过整型范围),双精度浮点数F,以一个空格分开。 输出 一行两个数,分…

蓝凌EIS智慧协同平台 ShowUserInfo.aspx SQL注入漏洞复现

0x01 产品简介 蓝凌EIS智慧协同平台是一款专为企业提供高效协同办公和团队合作的产品。该平台集成了各种协同工具和功能,旨在提升企业内部沟通、协作和信息共享的效率。 0x02 漏洞概述 由于蓝凌EIS智慧协同平台 ShowUserInfo.aspx接口处未对用户输入的SQL语句进行过滤或验证…