深度学习怎么学?

推荐这本小白看的《深度学习:从基础到实践(上下册)》。

深度学习:从基础到实践(上下册)

深入浅出的讲述了深度学习的基本概念与理论知识,不涉及复杂的数学内容,零基础小白也能轻松掌握!

本书从基本概念和理论入手,通过近千张图和简单的例子由浅入深地讲解深度学习的相关知识,且不涉及复杂的数学内容。

本书分为上下两册。上册着重介绍深度学习的基础知识,旨在帮助读者建立扎实的知识储备,主要介绍随机性与基础统计学、训练与测试、过拟合与欠拟合、神经元、学习与推理、数据准备、分类器、集成算法、前馈网络、激活函数、反向传播等内容。下册介绍机器学习的 scikit-learn 库和深度学习的 Keras 库(这两种库均基于 Python 语言),以及卷积神经网络、循环神经网络、自编码器、强化学习、生成对抗网络等内容,还介绍了一些创造性应用,并给出了一些典型的数据集,以帮助读者更好地了解学习。

本书适合想要了解和使用深度学习的人阅读,也可作为深度学习教学培训领域的入门级参考用书。

本书致力于介绍深度学习的基础知识, 以帮助读者建立扎实的知识储备。随着深度学习实践 的推进,你不仅需要对本书课题的背景有充分了解,还需要充分知悉可能需要查阅的资料。

这不是一本关于编程的书。编程很重要, 但是会不可避免地涉及各个细节, 而这些细节与本 书的主旨并无关联。此外, 编程会让你的思考局限于某一个库或者某种语言。尽管这些细节是构 建最终学习网络体系的必要条件, 但是当你想要专注于某一重要理念时, 这些细节可能会让你分 心。与其就循环和目录以及数据结构泛泛而谈, 倒不如以一种独立的方式讨论某种语言和库相关 的所有知识。只要扎实理解了对这些理念,阅读任何库文件都将变得轻而易举。

本书几乎不涉及数学问题

很多人不喜欢复杂的方程式。如果你也是这样,那么本书非常适合你!

本书几乎不涉及复杂的数学运算。如果你不讨厌乘法, 那么本书简直太适合你了, 因为书中 除了乘法,并无任何复杂的运算。

本书所讨论的许多算法都有丰富的理论依据, 并且是经过仔细分析和研究得出的。如果你正 打算变换一种算法以实现新目的, 或者需要独立编写一个新程序, 就必须了解这一点。不过, 在 实践中, 大多数人会用由专家编写的程序。这些程序是经过高度优化的, 并且可以从免费的开源 库中获取。

我们希望能帮助你理解这些技术的原理, 掌握其正确应用, 并懂得如何解读结果, 但无须深 入了解技术背后的数学结构。

如果你喜欢数学或者想了解理论,那么请阅读每一章的“参考资料”部分给出的相关内容。 大部分资料是简洁且能够激发灵感的, 并且给出了作者在本书中刻意省略的细节。如果你不喜欢 数学,可以略过此部分的内容。

本书分上下两册

本书涵盖的内容非常多,因此我们将其分成了上下两册。其中下册是上册内容的拓展和补充。 本书内容是以循序渐进的模式组织的, 因此建议你先读上册, 再去学习下册的内容。如果你有信 心,也可以直接从下册开始阅读。

小编做了一个思维导图,让您更快捷的了解本书的内容。

深度学习:从基础到实践(上册)内容

深度学习:从基础到实践(下册)内容

在第15章、第23章和第24章中,我们将详细讨论机器学习的scikit-learn库以及深度学习的Keras库。这两种库均基于Python语言。我们结合示例代码进行讲解,以期让你对Python库有深度的了解。即使你不喜欢Python,这些程序也会让你对典型的工作流和程序结构有所了解。这些章节中的代码可以在Python手册中找到,并且可用于基于浏览器的Jupyter编程环境。

本书的其他大部分章节也有配套的可选 Python 手册。这些章节针对书中每个计算机生成的数 字给出代码,而且通常使用其中所涉及的技术来生成代码。由于本书的焦点并非在于 Python 语言 和编程(上述章节除外),因此这些手册仅作参考,不再赘述。

机器学习、深度学习和大数据正在世界范围内产生令人意想不到的、快速而深刻的影响。对人类以及人类文化而言,这是一个既复杂又重要的课题。

读完本书,你可以:

  • 设计和构建属于自己的深度学习网络体系;
  • 使用上述网络体系来理解或生成数据;
  • 针对文本、图像和其他类型的数据进行描述性分类;
  • 预测数据序列的下一个值;
  • 研究数据结构;
  • 处理数据,以实现最高效率;
  • 使用你喜欢的任何编程语言和 DL 库;
  • 了解新论文和新理念,并将其付诸实践;
  • 享受与他人进行深度学习讨论的过程。

本书会采用一种严肃而不失友好的讲解方式, 并通过大量图示来帮助你加深理解。同时, 我 们不会在书中堆砌过多的代码,甚至不会使用任何比乘法更复杂的运算。

如果你觉得还不错,欢迎阅读此书!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/60986.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023-8-31 Dijkstra求最短路(二)

题目链接&#xff1a;Dijkstra求最短路 II #include <iostream> #include <cstring> #include <algorithm> #include <vector> #include <queue>using namespace std;typedef pair<int, int> PII;const int N 150010;int n, m; int h[N…

QT Creator工具介绍及使用

一、QT的基本概念 QT主要用于图形化界面的开发&#xff0c; QT是基于C编写的一套界面相关的类库&#xff0c;如进程线程库&#xff0c;网络编程的库&#xff0c;数据库操作的库&#xff0c;文件操作的库等。 如何使用这个类库&#xff1a;类库实例化对象(构造函数) --> 学习…

数据结构(Java实现)-二叉树(上)

树型结构 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。 有一个特殊的结点&#xff0c;称为根结点&…

Docker搭建elasticsearch+kibana测试

最近需要做大数据画像&#xff0c;所以先简单搭建一个eskibana学习使用&#xff0c;记录一下搭建过程和遇到的问题以及解决办法 1.拉取es和kibana镜像 在拉取镜像之前先搜索一下 elasticsearch发现是存在elasticsearch镜像的&#xff0c;我一般习惯性拉取最新镜像&#xff0c…

信息化发展12

数字民生 数字民生建设重点通常强调&#xff1a; 1 &#xff09; 普惠&#xff1a; 充分开发利用信息技术体系&#xff0c; 扩大民生保障覆盖范围&#xff0c; 助力普惠型民生建设&#xff0c; 解决民生资源配置不均衡等问题。 2&#xff09; 赋能&#xff1a; 信息技术体系与…

若依富文本 html样式 被过滤问题

一.场景 进入页面&#xff0c;富文本编辑框里回显这条新闻内容&#xff0c;如下图&#xff0c; 然后可以在富文本编辑框里对它实现再编辑&#xff0c;编辑之后将html代码提交保存到后台数据库。可以点击详情页进行查看。 出现问题&#xff1a;在提交到后台controller时&#x…

通过HTTP进行并发的数据抓取

在进行大规模数据抓取时&#xff0c;如何提高效率和稳定性是关键问题。本文将介绍一种可操作的方案——使用HTTP代理来实现并发的网页抓取&#xff0c;并帮助您加速数据抓取过程。 1. 选择合适的HTTP代理服务供应商 - 寻找信誉良好、稳定可靠且具备较快响应时间的HTTP代理服务…

单片机通用学习-​什么是寄存器?​

什么是寄存器&#xff1f; 寄存器是一种特殊的存储器&#xff0c;主要用于存储和检查微机的状态。CPU寄存器用于存储和检查CPU的状态&#xff0c;具体包括计算中途数据、程序因中断或子程序分支时的返回地址、计算结果为零时的负值、计算结果为零时的信息、进位值等。 由于CP…

相机SD卡数据丢失如何恢复?

出门在外&#xff0c;相机是人们记录生活点滴的重要工具&#xff0c;是旅游的最佳玩伴。人们每到一个地方&#xff0c;都喜欢用相机来见证自己来过的痕迹&#xff0c;拍好的照片都会被放到相机卡里&#xff0c;但在使用相机时&#xff0c;有时我们会意外删除了重要的照片或视频…

微服务事务管理(Dubbo)

Seata 是什么 Seata 是一款开源的分布式事务解决方案&#xff0c;致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式&#xff0c;为用户打造一站式的分布式解决方案。 一、示例架构说明 可在此查看本示例完整代码地址&#x…

第八周第四天学习总结

测试linux基础并复习基础命令

系统架构设计高级技能 · Web架构

现在的一切都是为将来的梦想编织翅膀&#xff0c;让梦想在现实中展翅高飞。 Now everything is for the future of dream weaving wings, let the dream fly in reality. 点击进入系列文章目录 系统架构设计高级技能 Web架构 一、Web架构介绍1.1 Web架构涉及技术1.2 单台服务…

springCloud整合Zookeeper的时候调用找不到服务

SpringCloud整合Zookeeper的时候调用找不到服务 首先&#xff0c;我们在注册中心注册了这个服务&#xff1a; 然后我们使用RestTemplate 调用的时候发现失败了&#xff1a;找不到这个服务&#xff1a; 找了很多资料发现这个必须要加上负载才行 BeanLoadBalanced //负载publi…

在CentOS7中,安装并配置Redis【个人笔记】

一、拓展——Ubuntu上安装Redis 输入命令su --->切换到root用户【如果已经是&#xff0c;则不需要进行该操作】apt search redis --->使用apt命令来搜索redis相关的软件包【查询后&#xff0c;检查redis版本是否是你需要的&#xff0c;如果不是则需要看看其他资料~】ap…

面试总结 - 计算机网络

计算机网络 1 OSI 七层模型 | TCP与UDP | 响应状态码 OSI 模型 应用层: 计算机用户&#xff0c;以及各种应用程序和网络之间的接口&#xff0c;其功能是直接向用户提供服务&#xff0c;完成用户希望在网络上完成的各种工作。 HTTP SMTP FTP DNS 表示层: 负责数据格式的转换&…

银河麒麟V10(Tercel)服务器版安装 Docker

一、服务器环境 ## 查看系统版本&#xff0c;确认版本 cat /etc/kylin-release Kylin Linux Advanced Server release V10 (Tercel)## 操作系统 uname -p aarch64## 内核版本&#xff08;≥ 3.10&#xff09; uname -r 4.19.90-21.2.ky10.aarch64## iptables 版本&#xff08;…

Windows系统下MMDeploy预编译包的使用

Windows系统下MMDeploy预编译包的使用 MMDeploy步入v1版本后安装/使用难度大幅下降&#xff0c;这里以部署MMDetection项目的Faster R-CNN模型为例&#xff0c;将PyTorch模型转换为ONNX进而转换为Engine模型&#xff0c;部署到TensorRT后端&#xff0c;实现高效推理&#xff0c…

算法第一天——数组理论基础

数组 数组是存放连续内存空间上的相同类型数据的集合&#xff0c; 数组的下标都是从0开始&#xff0c; 数组内存空间的地址是连续的。 数组元素不能删除&#xff0c;只能修改。即数组数组一旦分配了内存空间就不能修改空间大小。 但是在java中&#xff0c;java的内存的空间地址…

《Kubernets证书篇:kubernetes1.24.17证书修改时间限制》

一、背景 Kubernetes 默认的证书有效期只有1年,因此需要每年手动更新一次节点上面的证书,特别麻烦而且更新过程中可能会出现问题,因此我们要对 Kubernetes 的 SSL 证书有效期进行修改,这里将证书的时间限制修改为100年。 环境信息如下: 操作系统内核版本K8S版本Ubuntu 20.…

含纽扣电池的产品出口澳洲需要做哪些认证?认证标准是什么?

澳大利亚含纽扣电池产品新规 01纽扣电池安全问题<<<< 在澳大利亚&#xff0c;已有儿童因为误食纽扣电池而导致死亡&#xff0c;且每月至少有一名儿童因吞咽或插入纽扣/硬币电池而严重受伤&#xff0c;导致其中一些儿童永久性损伤&#xff0c;而全世界数以百万计的…