Guava:Cache强大的本地缓存框架

Guava Cache是一款非常优秀的本地缓存框架。

一、 经典配置

Guava Cache 的数据结构跟 JDK1.7 的 ConcurrentHashMap 类似,提供了基于时间、容量、引用三种回收策略,以及自动加载、访问统计等功能。

基本的配置

    @Testpublic void testLoadingCache() throws ExecutionException {CacheLoader<String, String> cacheLoader = new CacheLoader<String, String>() {@Overridepublic String load(String key) throws Exception {System.out.println("加载 key:" + key);return "value";}};LoadingCache<String, String> cache = CacheBuilder.newBuilder()//最大容量为100(基于容量进行回收).maximumSize(100)//配置写入后多久使缓存过期.expireAfterWrite(10, TimeUnit.SECONDS)//配置写入后多久刷新缓存.refreshAfterWrite(1, TimeUnit.SECONDS).build(cacheLoader);cache.put("Lasse", "穗爷");System.out.println(cache.size());System.out.println(cache.get("Lasse"));System.out.println(cache.getUnchecked("hello"));System.out.println(cache.size());}

例子中,缓存最大容量设置为 100 (基于容量进行回收),配置了失效策略刷新策略

1、失效策略

配置 expireAfterWrite 后,缓存项在被创建或最后一次更新后的指定时间内会过期。

2、刷新策略

配置 refreshAfterWrite 设置刷新时间,当缓存项过期的同时可以重新加载新值 。

这个例子里,有的同学可能会有疑问:为什么需要配置刷新策略,只配置失效策略不就可以吗

当然是可以的,但在高并发场景下,配置刷新策略会有奇效,接下来,我们会写一个测试用例,方便大家理解 Gauva Cache 的线程模型。

二、理解线程模型

我们模拟在多线程场景下,「缓存过期执行 load 方法」和「刷新执行 reload 方法」两者的运行情况。

@Testpublic void testLoadingCache2() throws InterruptedException, ExecutionException {CacheLoader<String, String> cacheLoader = new CacheLoader<String, String>() {@Overridepublic String load(String key) throws Exception {System.out.println(Thread.currentThread().getName() + "加载 key" + key);try {Thread.sleep(500);} catch (InterruptedException e) {throw new RuntimeException(e);}return "value_" + key.toLowerCase();}@Overridepublic ListenableFuture<String> reload(String key, String oldValue) throws Exception {System.out.println(Thread.currentThread().getName() + "加载 key" + key);Thread.sleep(500);return super.reload(key, oldValue);}};LoadingCache<String, String> cache = CacheBuilder.newBuilder()//最大容量为20(基于容量进行回收).maximumSize(20)//配置写入后多久使缓存过期.expireAfterWrite(10, TimeUnit.SECONDS)//配置写入后多久刷新缓存.refreshAfterWrite(1, TimeUnit.SECONDS).build(cacheLoader);System.out.println("测试过期加载 load------------------");ExecutorService executorService = Executors.newFixedThreadPool(5);for (int i = 0; i < 5; i++) {executorService.execute(new Runnable() {@Overridepublic void run() {try {long start = System.currentTimeMillis();System.out.println(Thread.currentThread().getName() + "开始查询");String hello = cache.get("hello");long end = System.currentTimeMillis() - start;System.out.println(Thread.currentThread().getName() + "结束查询 耗时" + end);} catch (Exception e) {throw new RuntimeException(e);}}});}cache.put("hello2", "旧值");Thread.sleep(2000);System.out.println("测试重新加载 reload");//等待刷新,开始重新加载Thread.sleep(1500);ExecutorService executorService2 = Executors.newFixedThreadPool(5);
//        CyclicBarrier cyclicBarrier = new CyclicBarrier(3);for (int i = 0; i < 5; i++) {executorService2.execute(new Runnable() {@Overridepublic void run() {try {long start = System.currentTimeMillis();System.out.println(Thread.currentThread().getName() + "开始查询");//cyclicBarrier.await();String hello = cache.get("hello2");System.out.println(Thread.currentThread().getName() + ":" + hello);long end = System.currentTimeMillis() - start;System.out.println(Thread.currentThread().getName() + "结束查询 耗时" + end);} catch (Exception e) {throw new RuntimeException(e);}}});}Thread.sleep(9000);}

 执行结果见下图

执行结果表明:Guava Cache 并没有后台任务线程异步的执行 load 或者 reload 方法。

  1. 失效策略expireAfterWrite 允许一个线程执行 load 方法,其他线程阻塞等待 。

    当大量线程用相同的 key 获取缓存值时,只会有一个线程进入 load 方法,而其他线程则等待,直到缓存值被生成。这样也就避免了缓存击穿的危险。高并发场景下 ,这样还是会阻塞大量线程。

  2. 刷新策略refreshAfterWrite 允许一个线程执行 load 方法,其他线程返回旧的值。

    单个 key 并发下,使用 refreshAfterWrite ,虽然不会阻塞了,但是如果恰巧同时多个 key 同时过期,还是会给数据库造成压力。

为了提升系统性能,我们可以从如下两个方面来优化 :

  1. 配置  refresh < expire ,减少大量线程阻塞的概率;

  2. 采用异步刷新的策略,也就是线程异步加载数据,期间所有请求返回旧的缓存值,防止缓存雪崩。

下图展示优化方案的时间轴 :

三、 两种方式实现异步刷新

3.1 重写 reload 方法

ExecutorService executorService = Executors.newFixedThreadPool(5);CacheLoader<String, String> cacheLoader = new CacheLoader<String, String>() {@Overridepublic String load(String key) throws Exception {System.out.println(Thread.currentThread().getName() + "加载 key" + key);//从数据库加载return "value_" + key.toLowerCase();}@Overridepublic ListenableFuture<String> reload(String key, String oldValue) throws Exception {ListenableFutureTask<String> futureTask = ListenableFutureTask.create(() -> {System.out.println(Thread.currentThread().getName() + "异步加载 key" + key);return load(key);});executorService.submit(futureTask);return futureTask;}};LoadingCache<String, String> cache = CacheBuilder.newBuilder()//最大容量为20(基于容量进行回收).maximumSize(20)//配置写入后多久使缓存过期.expireAfterWrite(10, TimeUnit.SECONDS)//配置写入后多久刷新缓存.refreshAfterWrite(1, TimeUnit.SECONDS).build(cacheLoader);

3.2 实现 asyncReloading 方法

ExecutorService executorService = Executors.newFixedThreadPool(5);CacheLoader.asyncReloading(new CacheLoader<String, String>() {@Overridepublic String load(String key) throws Exception {System.out.println(Thread.currentThread().getName() + "加载 key" + key);//从数据库加载return "value_" + key.toLowerCase();}}, executorService);

四、异步刷新 + 多级缓存

场景

一家电商公司需要进行 app 首页接口的性能优化。笔者花了大概两天的时间完成了整个方案,采取的是两级缓存模式,同时采用了 Guava 的异步刷新机制。

整体架构如下图所示:

缓存读取流程如下

1、业务网关刚启动时,本地缓存没有数据,读取 Redis 缓存,如果 Redis 缓存也没数据,则通过 RPC 调用导购服务读取数据,然后再将数据写入本地缓存和 Redis 中;若 Redis 缓存不为空,则将缓存数据写入本地缓存中。

2、由于步骤1已经对本地缓存预热,后续请求直接读取本地缓存,返回给用户端。

3、Guava 配置了 refresh 机制,每隔一段时间会调用自定义 LoadingCache 线程池(5个最大线程,5个核心线程)去导购服务同步数据到本地缓存和 Redis 中。

优化后,性能表现很好,平均耗时在 5ms 左右,同时大幅度的减少应用 GC 的频率。

该方案依然有瑕疵,一天晚上我们发现 app 端首页显示的数据时而相同,时而不同。

也就是说:虽然 LoadingCache 线程一直在调用接口更新缓存信息,但是各个服务器本地缓存中的数据并非完成一致。

这说明了两个很重要的点:

1、惰性加载仍然可能造成多台机器的数据不一致;

2、LoadingCache 线程池数量配置的不太合理,  导致了任务堆积。

建议解决方案是

1、异步刷新结合消息机制来更新缓存数据,也就是:当导购服务的配置发生变化时,通知业务网关重新拉取数据,更新缓存。

2、适当调大 LoadingCache 的线程池参数,并在线程池埋点,监控线程池的使用情况,当线程繁忙时能发出告警,然后动态修改线程池参数。

五、总结

Guava Cache 非常强大,它并没有后台任务线程异步的执行 load 或者 reload 方法,而是通过请求线程来执行相关操作。

为了提升系统性能,我们可以从如下两个方面来处理 :

  1. 配置 refresh < expire,减少大量线程阻塞的概率。

  2. 采用异步刷新的策略,也就是线程异步加载数据,期间所有请求返回旧的缓存值

尽管如此,我们在使用这种方式时,依然需要考虑的缓存和数据库一致性问题。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/609728.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6 - 数据备份与恢复|innobackupex

数据备份与恢复&#xff5c;innobackupex 数据备份与恢复数据备份相关概念物理备份与恢复逻辑备份&#xff08;推荐&#xff09;使用binlog日志文件实现对数据的时时备份‘使用日志 恢复数据 innobackupex 对数据做备份和恢复增量备份与恢复 数据备份与恢复 数据备份相关概念 …

【Docker】Docker基础

文章目录 安装使用帮助启动命令镜像命令容器命令 安装 # 卸载旧版本 sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine # 设置存储库 sudo yum install -y yum-utils …

关于git使用的tips

前言 这里是一些git指令使用的tips&#xff0c;如果你作为初学者的话&#xff0c;我认为它将对你有所帮助。 常见指令 常见问题处理 1、使用git clone下载【huggingface.co】资源超时或无法请求问题 绝大多数情况是网络问题&#xff0c;首先如果是比较大的资源&#xff0c;你需…

数据库:如何取消mysql的密码

因为调试MySQL数据接口&#xff0c;总是需要输入密码很烦&#xff0c;所以决定取消mysql的root密码&#xff0c; 网上推荐的有两种方法&#xff1a; 1、mysql命令 SET PASSWORD FOR rootlocalhostPASSWORD(); 2、运行 mysqladmin 命令 mysqladmin -u root -p password …

vue设置height:100vh导致页面超出屏幕可以上下滑动

刚开始设置的height:100vh&#xff0c;就会出现如图的效果&#xff0c;会出现上下滚动 <template><view class"container">......</view> </template><style lang"scss">.container {height: 100vh;} </style> 解决方…

精确掌控并发:分布式环境下并发流量控制的设计与实现(一)

这是《百图解码支付系统设计与实现》专栏系列文章中的第&#xff08;10&#xff09;篇。 本篇主要讲清楚常用的并发流量控制方案&#xff0c;包括固定窗口、滑动窗口、漏桶、令牌桶、分布式消息中间件等&#xff0c;以及各种方案在支付系统不同场景下的应用。 在非支付场景&a…

故事机手机平板等智能硬件DVT阶段可靠性测试方法

DVT是什么 DVT是设计样品验证测试评审阶段&#xff0c;这个阶段要进行全面的&#xff0c;客观的测试&#xff0c; 主要测试项目包括&#xff1a;功能测试&#xff0c;安规测试&#xff0c;性能测试&#xff0c;合规测试&#xff08;兼容性&#xff09;&#xff0c;机械测试&am…

QT上位机开发(树形控件在地图软件中的应用)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 树形控件还是非常有用的&#xff0c;比如在选择文件的时候、选择目录的时候、以及选择同类型数据中某一个特定选项的时候。当然&#xff0c;对于ca…

JVM工作原理与实战(十一):双亲委派机制

专栏导航 JVM工作原理与实战 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、双亲委派机制 1.双亲委派机制详解 2.父类加载器 3.双亲委派机制的主要作用 二、双亲委派机制常见问题 总结 前言 ​JVM作为Java程序的运行环境&#xff0c;其负责解释和执行字…

STM32的FMC独立管理和控制外部存储器

在STM32中&#xff0c;FMC&#xff08;Flexible Memory Controller&#xff09;是一个功能强大的外部存储器控制器&#xff0c;用于管理和控制外部存储器设备&#xff0c;如SRAM、SDRAM、NOR Flash等。FMC允许将多个存储器设备连接到微控制器&#xff0c;并通过不同的片选线进行…

LLM之长度外推(一)| 基于位置编码的长度外推研究综述

论文&#xff1a;Length Extrapolation of Transformers: A Survey from the Perspective of Position Encoding地址&#xff1a;https://arxiv.org/abs/2312.17044 Transformer自诞生以来就席卷了NLP领域&#xff0c;因为它具有对序列中复杂依赖关系进行建模的优越能力。尽管基…

001 Golang-channel-practice

最近在练习并发编程。加上最近也在用Golang写代码&#xff0c;所以记录一下练习的题目。 第一道题目是用10个协程打印100条信息&#xff0c;创建10个协程。每个协程都会有自己的编号。每个协程都会被打印10次。 package mainimport ("fmt""strconv" )func …

[②C++ Boost]: Boost库编译,arm交叉编译方法

前言 Boost是十分实用的C库&#xff0c;如果想在arm环境下使用&#xff0c;就需要自己下载源码编译&#xff0c;本篇博客就记录下Boost库的编译方法。 下载Boost源码 Boost源码的下载路径可以使用&#xff1a;https://sourceforge.net/projects/boost/files/boost/ 编译 …

虚幻UE 材质-材质编辑器节点2

上一篇&#xff1a;虚幻UE 材质-材质编辑器节点 1 上一篇文章对材质编辑器的部分节点做了讲解和对比较常用的功能做了展示 这篇文章继续对上一篇的文章进行补充 文章目录 前言一、ReflectionVector反射向量二、Material Parameter Collection材质参数集三、TwoSideSign和Vertex…

使用 Process Explorer 和 Windbg 排查软件线程堵塞问题

目录 1、问题说明 2、线程堵塞的可能原因分析 3、使用Windbg和Process Explorer确定线程中发生了死循环 4、根据Windbg中显示的函数调用堆栈去查看源码&#xff0c;找到问题 4.1、在Windbg定位发生死循环的函数的方法 4.2、在Windbg中查看变量的值去辅助分析 4.3、是循环…

基于net6的asp.net core webapi项目打包为docker镜像,并推送至私有镜像仓库harbor中

基于net6的asp.net core webapi项目打包为docker镜像&#xff0c;并推送至私有镜像仓库harbor中 0、环境说明1、打包步骤1.1 创建Asp.net core WebApi项目1.2 在Asp.net core WebApi项目根目录下创建Dockerfile文件1.3 在子系统Ubuntu20.04.4中通过docker build生成docker镜像1…

【angular教程240105】02绑定属性 绑定数据、条件判断、加载图片、【ngClass】 【ngStyle】、Angular管道

【angular】02绑定属性 绑定数据、条件判断、加载图片、【ngClass】 【ngStyle】、Angular管道 0 一些基础的概念 标记为可注入的服务 在Angular中&#xff0c;一个服务是一个通常提供特定功能的类&#xff0c;比如获取数据、日志记录或者业务逻辑等。标记为可注入的服务意味着…

PCL 计算异面直线的距离

目录 一、算法原理二、代码实现三、结果展示四、相关链接本文由CSDN点云侠原创,PCL 计算异面直线的距离,爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 设置直线 A B AB A

【JVM 基础】 Java 类加载机制

JVM 基础 - Java 类加载机制 类的生命周期类的加载: 查找并加载类的二进制数据连接验证: 确保被加载的类的正确性准备: 为类的静态变量分配内存&#xff0c;并将其初始化为默认值解析: 把类中的符号引用转换为直接引用 初始化使用卸载 类加载器&#xff0c; JVM类加载机制类加载…

nuxt 不解析HTML结构bug

记录一个本人Vue3迁移Nuxt3的报错 报错信息 [Vue warn]: Failed to resolve directive: top [nitro] [unhandledRejection] TypeError: Cannot read properties of undefined (reading ‘getSSRProps’) 原因是Vue3在迁移到nuxt3的时候有一个自定义指令没有搬过来&#xff0…