强化学习的数学原理学习笔记 - Actor-Critic

文章目录

  • 概览:RL方法分类
  • Actor-Critic
    • Basic actor-critic / QAC
    • 🟦A2C (Advantage actor-critic)
    • Off-policy AC
      • 🟡重要性采样(Importance Sampling)
      • Off-policy PG
      • Off-policy AC
    • 🟦DPG (Deterministic AC)


本系列文章介绍强化学习基础知识与经典算法原理,大部分内容来自西湖大学赵世钰老师的强化学习的数学原理课程(参考资料1),并参考了部分参考资料2、3的内容进行补充。

系列博文索引:

  • 强化学习的数学原理学习笔记 - RL基础知识
  • 强化学习的数学原理学习笔记 - 基于模型(Model-based)
  • 强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)
  • 强化学习的数学原理学习笔记 - 时序差分学习(Temporal Difference)
  • 强化学习的数学原理学习笔记 - 值函数近似(Value Function Approximation)
  • 强化学习的数学原理学习笔记 - 策略梯度(Policy Gradient)
  • 强化学习的数学原理学习笔记 - Actor-Critic

参考资料:

  1. 【强化学习的数学原理】课程:从零开始到透彻理解(完结)(主要)
  2. Sutton & Barto Book: Reinforcement Learning: An Introduction
  3. 机器学习笔记

*注:【】内文字为个人想法,不一定准确

概览:RL方法分类

图源:https://zhuanlan.zhihu.com/p/36494307
*图源:https://zhuanlan.zhihu.com/p/36494307

Actor-Critic

Actor-Critic属于策略梯度(PG)方法,实际上是将值函数近似和策略梯度方法进行了结合。

  • Actor:策略更新,Actor用来执行动作与环境交互
  • Critic:策略评估 / 值估计,Critic用来评估Actor的好坏

Basic actor-critic / QAC

与策略梯度算法对应,Actor即为策略梯度算法中执行策略更新的部分(通过更新参数 θ \theta θ),而Critic是估计 q t ( s t , a t ) q_t(s_t,a_t) qt(st,at)的算法。QAC(Q actor-critic)是最简单的actor-critic算法,也是一种on-policy方法。

QAC vs. REINFOCE:估计 q t ( s t , a t ) q_t(s_t,a_t) qt(st,at)的方法不同

  • REINFORCE:蒙特卡洛(MC)
  • QAC:时序差分(TD)

QAC算法:【简单理解:QAC = Sarsa with function estimation + Policy Gradient

  • Critic(值更新 / 策略评估):采用Sarsa with function estimation的方法估计 q t ( s t , a t ) q_t(s_t,a_t) qt(st,at)
    • w t + 1 = w t + α w [ r t + 1 + γ q ( s t + 1 , a t + 1 , w t ) − q ( s t , a t , w t ) ] ∇ w q ( s t , a t , w t ) w_{t+1} = w_t + \alpha_w [r_{t+1} + \gamma {q}(s_{t+1}, a_{t+1}, w_t) - {\color{blue} {q}(s_t, a_t, w_t)}] {\color{blue} \nabla_w {q}(s_t, a_t, w_t)} wt+1=wt+αw[rt+1+γq(st+1,at+1,wt)q(st,at,wt)]wq(st,at,wt)
  • Actor(策略更新 / 策略提升):采用策略梯度(PG)的方法(同REINFROCE)更新策略
    • θ t + 1 = θ t + α θ ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) q t ( s t , a t , w t + 1 ) \theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \ln\pi (a_t|s_t, \theta_t) {\color{blue} q_t(s_t, a_t, w_{t+1}) } θt+1=θt+αθθlnπ(atst,θt)qt(st,at,wt+1)

🟦A2C (Advantage actor-critic)

A2C的基本思想:在QAC中引入baseline来减少估计的方差(variance)。

理论基础:引入baseline b ( S ) b(S) b(S)后,策略梯度(期望)不会发生改变,但其方差会减小(推导略),即 ∇ θ J ( θ ) = E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) ] = E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ ) ( q π ( S , A ) − b ( S ) ) ] \nabla_\theta J (\theta) = \mathbb{E}_{S\sim\eta,A\sim\pi} [\nabla_\theta \ln\pi (A|S, \theta) q_\pi(S, A) ] = \mathbb{E}_{S\sim\eta,A\sim\pi} [\nabla_\theta \ln\pi (A|S, \theta) (q_\pi(S, A) {\color{blue} - b(S))} ] θJ(θ)=ESη,Aπ[θlnπ(AS,θ)qπ(S,A)]=ESη,Aπ[θlnπ(AS,θ)(qπ(S,A)b(S))] 其中, b ( S ) b(S) b(S)为关于 S S S的标量函数。
使得方差最小的最优baseline形式为: b ∗ ( s ) = E A ∼ π [ ∥ ∇ θ ln ⁡ π ( A ∣ s , θ t ) ∥ 2 q ( S , A ) ] E A ∼ π [ ∥ ∇ θ ln ⁡ π ( A ∣ s , θ t ) ∥ 2 ] b^*(s) = \frac{ \mathbb{E}_{A\sim\pi} [ {\color{blue} \| \nabla_\theta \ln\pi (A|s, \theta_t) \|^2} {\color{red} q(S,A)} ] }{ \mathbb{E}_{A\sim\pi} [ {\color{blue} \| \nabla_\theta \ln\pi (A|s, \theta_t) \|^2} ] } b(s)=EAπ[θlnπ(As,θt)2]EAπ[θlnπ(As,θt)2q(S,A)]
但直接应用此式过于复杂,因此在实际中选择次优baseline,去掉权重项 ∥ ∇ θ ln ⁡ π ( A ∣ s , θ t ) ∥ 2 \| \nabla_\theta \ln\pi (A|s, \theta_t) \|^2 θlnπ(As,θt)2,有: b ( s ) = E A ∼ π [ q ( S , A ) ] = v π ( s ) b(s) = \mathbb{E}_{A\sim\pi} [q(S,A)] = v_\pi(s) b(s)=EAπ[q(S,A)]=vπ(s)
即将 s s s的状态值作为baseline。

在actor(策略更新)中引入状态值作为baseline,即:
θ t + 1 = θ t + α E [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) [ q π ( S , A ) − v π ( S ) ] ] = θ t + α E [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) δ π ( S , A ) ] \begin{aligned} \theta_{t+1} &= \theta_t + \alpha \mathbb{E} \Big[ \nabla_\theta \ln\pi (A|S, \theta_t) [{\color{blue} q_\pi(S, A) - v_\pi (S)}] \Big] \\ &= \theta_t + \alpha \mathbb{E} \Big[ \nabla_\theta \ln\pi (A|S, \theta_t) {\color{blue} \delta_\pi(S, A)} \Big] \end{aligned} θt+1=θt+αE[θlnπ(AS,θt)[qπ(S,A)vπ(S)]]=θt+αE[θlnπ(AS,θt)δπ(S,A)]
其中, δ π ( S , A ) = q π ( S , A ) − v π ( S ) \delta_\pi(S, A) = q_\pi(S, A) - v_\pi (S) δπ(S,A)=qπ(S,A)vπ(S)是优势函数(advantage function),表示当前状态下的特定动作相对于当前策略的优势。对应的随机采样公式为:
θ t + 1 = θ t + α ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) [ q t ( s t , a t ) − v t ( s t ) ] = θ t + α ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) δ t ( s t , a t ) \begin{aligned} \theta_{t+1} &= \theta_t + \alpha \nabla_\theta \ln\pi (a_t|s_t, \theta_t) [ {\color{blue} q_t(s_t, a_t) - v_t(s_t)} ] \\ &= \theta_t + \alpha \nabla_\theta \ln\pi (a_t|s_t, \theta_t) {\color{blue} \delta_t(s_t, a_t)} \end{aligned} θt+1=θt+αθlnπ(atst,θt)[qt(st,at)vt(st)]=θt+αθlnπ(atst,θt)δt(st,at)
进一步地,优势函数可以由TD error近似(推导略),好处是只需要一个神经网络近似 v t v_t vt即可,不需要再近似 q t q_t qt。这就是A2C(也称为TD actor-critic)算法,其优势函数的具体形式为:
δ t = r t + 1 + γ v t ( s t + 1 ) − v t ( s t ) \delta_t = r_{t+1} + \gamma v_{t} (s_{t+1}) - v_t (s_t) δt=rt+1+γvt(st+1)vt(st)
*注:

  • 优势函数在文献中通常记作 A A A
  • 这里的直觉是,动作值的相对值比其绝对值更重要

A2C的完整算法(on-policy):

  • TD error(优势函数): δ t = r t + 1 + γ v t ( s t + 1 ) − v t ( s t ) {\color{darkred} \delta_t} = r_{t+1} + \gamma v_{t} (s_{t+1}) - v_t (s_t) δt=rt+1+γvt(st+1)vt(st)
  • Critic(值更新 / 策略评估): w t + 1 = w t + α w δ t ∇ w v ( s t , w t ) w_{t+1} = w_t + \alpha_w {\color{darkred} \delta_t} {\nabla_w {v}(s_t, w_t)} wt+1=wt+αwδtwv(st,wt)
    • *注意这里与QAC的区别:QAC用的是Sarsa,A2C用的是TD,因此这里用状态值而非动作值
  • Actor(策略更新 / 策略提升): θ t + 1 = θ t + α θ δ t ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) \theta_{t+1} = \theta_t + \alpha_\theta {\color{darkred} \delta_t} \nabla_\theta \ln\pi (a_t|s_t, \theta_t) θt+1=θt+αθδtθlnπ(atst,θt)

Off-policy AC

AC算法本身是on-policy的,但是可以通过重要性采样(Importance Sampling) 将其转为off-policy算法。
*实际上,重要性采样可以应用于任何需要求期望的算法(如MC、TD等)。

🟡重要性采样(Importance Sampling)

重要性采样:基于概率分布 p 1 p_1 p1上对随机变量 X X X的采样,估计概率分布 p 0 p_0 p0 X X X的期望 E [ X ] \mathbb{E}[X] E[X]
*应用场景:难以直接在 p 0 p_0 p0上计算 X X X的期望,但可以很容易在 p 1 p_1 p1上对进行 X X X采样。例如: p 0 p_0 p0是连续分布,或 p 0 p_0 p0的形式未知(如其为神经网络)。

E X ∼ p 0 [ X ] = ∑ x p 0 ( x ) x = ∑ x p 1 ( x ) p 0 ( x ) p 1 ( x ) x ⏟ f ( x ) = E X ∼ p 1 [ f ( X ) ] {\color{red} \mathbb{E}_{X\sim p_0} [X] } = \sum_x p_0(x) x = \sum_x {\color{blue} p_1(x)} \underbrace{\frac{p_0(x)}{\color{blue} p_1(x)} x}_{f(x)} = {\color{red} \mathbb{E}_{X\sim p_1} [f (X)] } EXp0[X]=xp0(x)x=xp1(x)f(x) p1(x)p0(x)x=EXp1[f(X)]
其中, E X ∼ p 1 [ f ( X ) ] \mathbb{E}_{X\sim p_1} [f (X)] EXp1[f(X)]可以由对 f ( X ) f(X) f(X)的采样均值直接估计(大数定律),即:
E X ∼ p 0 [ X ] ≈ f ˉ = 1 n ∑ i = 1 n f ( x i ) = 1 n ∑ i = 1 n p 0 ( x i ) p 1 ( x i ) x i {\color{red} \mathbb{E}_{X\sim p_0} [X] } \approx \bar{f} = \frac{1}{n} \sum_{i=1}^{n} f(x_i) {\color{red} = \frac{1}{n} \sum_{i=1}^{n} {\color{blue} \frac{p_0(x_i)}{p_1(x_i)} } x_i } EXp0[X]fˉ=n1i=1nf(xi)=n1i=1np1(xi)p0(xi)xi
其中, p 0 ( x i ) p 1 ( x i ) \frac{p_0(x_i)}{p_1(x_i)} p1(xi)p0(xi)是重要性权重(importance weight),其大于1表明 x i x_i xi p 0 p_0 p0下被采样的概率更高,小于1表明在 p 1 p_1 p1下被采样的概率更高。

Off-policy PG

由行为策略 β \beta β生成经验采样,目标是最大化下式:
J ( θ ) = ∑ s ∈ S d β ( s ) v π ( s ) = E S ∼ d β [ v π ( S ) ] J(\theta) = \sum_{s \in \mathcal{S}} d_\beta (s) v_\pi (s) = \mathbb{E}_{S \sim d_\beta} [v_\pi (S)] J(θ)=sSdβ(s)vπ(s)=ESdβ[vπ(S)]
其中, d β d_\beta dβ为策略 β \beta β下的平稳分布。(*注意此式与策略梯度中 J ( θ ) J(\theta) J(θ)为平均状态值 v ˉ π \bar{v}_\pi vˉπ时公式的区别)
对应的梯度为:
∇ θ J ( θ ) = E S ∼ ρ , A ∼ β [ π ( A ∣ S , θ ) β ( A ∣ S ) ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) ] \nabla_\theta J(\theta) = \mathbb{E}_{S \sim \rho, A \sim \beta} \Big[ \frac{\pi(A|S, \theta)}{\beta(A|S)} \nabla_\theta \ln \pi (A|S, \theta) q_\pi (S, A) \Big] θJ(θ)=ESρ,Aβ[β(AS)π(AS,θ)θlnπ(AS,θ)qπ(S,A)]
式中 ρ \rho ρ是一个状态分布, π ( A ∣ S , θ ) β ( A ∣ S ) \frac{\pi(A|S, \theta)}{\beta(A|S)} β(AS)π(AS,θ)是重要性权重。注意 A ∼ β A \sim \beta Aβ而非 A ∼ π A \sim \pi Aπ

Off-policy AC

基于前文分析,Off-policy AC的算法为:
θ t + 1 = θ t + α θ π ( a t ∣ s t , θ t ) β ( a t ∣ s t ) ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) [ r t + 1 + γ v t ( s t + 1 ) − v t ( s t ) ] = θ t + α θ π ( a t ∣ s t , θ t ) β ( a t ∣ s t ) ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) δ t ( s t , a t ) \begin{aligned} \theta_{t+1} &= \theta_t + \alpha_\theta \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} \nabla_\theta \ln\pi (a_t|s_t, \theta_t) [ {r_{t+1} + \gamma v_{t} (s_{t+1}) - v_t (s_t)} ] \\ &= \theta_t + \alpha_\theta \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} \nabla_\theta \ln\pi (a_t|s_t, \theta_t) {\delta_t(s_t, a_t)} \end{aligned} θt+1=θt+αθβ(atst)π(atst,θt)θlnπ(atst,θt)[rt+1+γvt(st+1)vt(st)]=θt+αθβ(atst)π(atst,θt)θlnπ(atst,θt)δt(st,at)

算法步骤及伪代码类似于A2C,主要是多了重要性权重 π ( a t ∣ s t , θ t ) β ( a t ∣ s t ) \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} β(atst)π(atst,θt)

🟦DPG (Deterministic AC)

先前的PG及AC算法均为随机性(stochastic)策略,实际上也存在确定性(deterministic)策略的AC算法,即DPG(Deterministic Policy Gradient)。
确定性策略相对于随机性策略的优势:随机性策略只能处理有限个动作的情况(比如,神经网络的输出是有限的),而确定性策略可以处理连续的动作空间。

确定性策略记作: a = μ ( s , θ ) a = \mu (s, \theta) a=μ(s,θ),也可以简记为 μ ( s ) \mu (s) μ(s)
μ \mu μ是从状态空间 S \mathcal{S} S到动作空间 A \mathcal{A} A的映射,可以由神经网络表示。

DPG为off-policy方法(动作不依赖于具体策略),其梯度计算如下:
∇ θ J ( θ ) = ∑ s ∈ S ρ μ ( s ) ∇ θ μ ( s ) ( ∇ a q μ ( s , a ) ) ∣ a = μ ( s ) = E S ∼ ρ μ [ ∇ θ μ ( s ) ( ∇ a q μ ( s , a ) ) ∣ a = μ ( s ) ] \begin{aligned} \nabla_\theta J (\theta) &= \sum_{s \in \mathcal{S}} \rho_\mu (s) \nabla_\theta \mu(s) (\nabla_a q_\mu (s, a)) |_{a = \mu (s)} \\ & = \mathbb{E}_{S \sim \rho_\mu} [\nabla_\theta \mu(s) (\nabla_a q_\mu (s, a)) |_{a = \mu (s)}] \end{aligned} θJ(θ)=sSρμ(s)θμ(s)(aqμ(s,a))a=μ(s)=ESρμ[θμ(s)(aqμ(s,a))a=μ(s)]
其中, ρ μ \rho_\mu ρμ是一个状态分布。 ( ∇ a q μ ( s , a ) ) ∣ a = μ ( s ) (\nabla_a q_\mu (s, a)) |_{a = \mu (s)} (aqμ(s,a))a=μ(s)表示先对 q μ ( s , a ) q_\mu(s,a) qμ(s,a)求关于 a a a的梯度,再将其中 a a a的替换为 μ ( s ) \mu(s) μ(s)
对应的随机梯度上升算法为:
θ t + 1 = θ t + α θ ∇ θ μ ( s t ) ( ∇ a q μ ( s t , a ) ) ∣ a = μ ( s ) \theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu(s_t) (\nabla_a q_\mu (s_t, a)) |_{a=\mu(s)} θt+1=θt+αθθμ(st)(aqμ(st,a))a=μ(s)

DPG算法步骤(伪代码):
初始化:行为策略 β ( a ∣ s ) \beta (a|s) β(as);确定性目标策略 μ ( s , θ 0 ) \mu(s, \theta_0) μ(s,θ0),其中 θ 0 \theta_0 θ0为初始参数向量;值函数 v ( s , w 0 ) v(s, w_0) v(s,w0),其中 w 0 w_0 w0为初始参数向量。(* β \beta β也可以被替换为 μ \mu μ+噪音)

目标:最大化 J ( θ ) J(\theta) J(θ)
步骤:在每个episode的第 t t t个时间步中,遵循行为策略 β \beta β产生动作 a t a_t at并获得 r t + 1 r_{t+1} rt+1 s t + 1 s_{t+1} st+1

  • TD error(优势函数): δ t = r t + 1 + γ q ( s t + 1 , μ ( s t + 1 , θ t ) , w t ) − q ( s t , a t , w t ) {\color{darkred} \delta_t} = r_{t+1} + \gamma q(s_{t+1}, \mu(s_{t+1}, \theta_t), w_t) - q(s_t, a_t, w_t) δt=rt+1+γq(st+1,μ(st+1,θt),wt)q(st,at,wt)
  • Critic(值更新 / 策略评估): w t + 1 = w t + α w δ t ∇ w q ( s t , a t , w t ) w_{t+1} = w_t + \alpha_w {\color{darkred} \delta_t} \nabla_w q(s_t, a_t, w_t) wt+1=wt+αwδtwq(st,at,wt),即TD+值函数估计
  • Actor(策略更新 / 策略提升): θ t + 1 = θ t + α θ ∇ θ μ ( s t , θ t ) ( ∇ a q ( s t , a , w t + 1 ) ) ∣ a = μ ( s t ) \theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu(s_t, \theta_t) (\nabla_a q (s_t, a, w_{t+1})) |_{a=\mu(s_t)} θt+1=θt+αθθμ(st,θt)(aq(st,a,wt+1))a=μ(st)

注意到DPG中包含了 q ( s , a , w ) q(s,a,w) q(s,a,w),其可以由两种方式确定:

  • 线性函数: q ( s , a , w ) = ϕ T ( s , a ) w q(s,a,w) = \phi^T (s,a) w q(s,a,w)=ϕT(s,a)w,其中 ϕ ( s , a ) \phi(s,a) ϕ(s,a)是特征向量。这是DPG原论文中采用的方法,缺陷在于特征向量的选择比较困难,且线性函数的拟合能力有限
  • 神经网络:即后续的DDPG(Deep deterministic policy gradient)方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/609318.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#,入门教程(13)——字符(char)及字符串(string)的基础知识

上一篇: C#,入门教程(12)——数组及数组使用的基础知识https://blog.csdn.net/beijinghorn/article/details/123918227 字符串的使用与操作是必需掌握得滚瓜烂熟的编程技能之一!!!!! C#语言实…

python接口自动化测试框架介绍

之前在项目中搞了一套jmeter jenkins git ant接口自动化测试框架,在项目中运行了大半年了,效果还不错, 最近搞了一套requests unittest ddt pymysql BeautifulReport的接口自动化测试框架, 测试用例在yaml文件中&#xff0c…

Java面向对象综合练习(拼图小游戏),用java图形化界面实现拼图小游戏

1. 设计游戏的目的 锻炼逻辑思维能力利用Java的图形化界面,写一个项目,知道前面学习的知识点在实际开发中的应用场景 2. 游戏的最终效果呈现 Hello,各位同学大家好。今天,我们要写一个非常有意思的小游戏 —《拼图小游戏》 我们…

MySQL语法及IDEA使用MySQL大全

在项目中我们时常需要写SQL语句,或简单的使用注解直接开发,或使用XML进行动态SQL之类的相对困难的SQL,并在IDEA中操控我们的SQL,但网上大都图方便或者觉得太简单了,完全没一个涵盖两个方面的讲解。 单表: …

并发程序设计--D11D12进程间通信

概念:就是进程和进程之间交换信息。 常用通信方式 无名管道(pipe) 有名管道 (fifo) 信号(signal) 共享内存映射(mmap) 套接字(socket) 过时的IPC通信方式 System…

如何在iOS手机上查看应用日志

引言 在开发iOS应用过程中,查看应用日志是非常重要的一项工作。通过查看日志,我们可以了解应用程序运行时的状态和错误信息,帮助我们进行调试和排查问题。本文将介绍两种方法来查看iOS手机上的应用日志,并提供相应的操作步骤。 …

文件批量归类,文件归类不再难

在快节奏的现代社会,时间就是金钱。使用【文件批量改名高手】软件,你可以在短时间内完成大量文件的归类工作,大大提高了工作效率。从此告别冗长、繁琐的文件整理过程,让你告别凌乱,让文件归类变得如此简单。 所需工具…

【算法分析与设计】数字连续的最长序列

题目 给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1: 输入:nums [100,4,200,1,3,2] 输出&#xff1a…

阿里巴巴秋招前端笔试题

单选题 下面的 JSX 代码中&#xff0c;哪一个无法达到预期的效果&#xff1f; A.<h2>Hello World</h2> B.<input type”checkbox”/> C.<div class”msg-box”>{msg}</div> D.<label htmlFor”name”>Leo</label> E.div styl…

ISPM 十四五规划

指导思想 坚定不移贯彻创新、协调、绿色、开放、共享的新发展理念&#xff0c;坚持稳中求进工作总基调 2035展望 展望2035年&#xff0c;基本实现新型工业化、信息化、城镇化、农业现代化&#xff0c;建成现代化经济体系。 重大科技基础设施 深入实施制造强国战略 相关关键…

近似点梯度法

最优化笔记——Proximal Gradient Method 最优化笔记&#xff0c;主要参考资料为《最优化&#xff1a;建模、算法与理论》 文章目录 最优化笔记——Proximal Gradient Method一、邻近算子&#xff08;1&#xff09;定义 二、近似点梯度法&#xff08;1&#xff09;迭代格式&…

WEB 3D技术 three.js 包围盒

本文 我们来说 包围盒 如下图所示 就是一个方框 框住我们整个物体 它的作用 比较明显的就是 当用户点击某个物体 我们用包围盒套住 用户能够很直观的知道自己当前选中的物体是哪一个 还有就是 比如 我们物体做的比较复杂 是非常多顶点构建的 那么 我们判断它有没有和其他物体…

java连接池、C3P0、Druid德鲁伊连接池技术

java线程池 连接池C3P0Druid 连接池 概念&#xff1a;其实就是一个容器(集合)&#xff0c;存放数据库连接的容器。当系统初始化好后&#xff0c;容器被创建&#xff0c;容器中会申请一些连接对象&#xff0c;当用户来访问数据库时&#xff0c;从容器中获取连接对象&#xff0c…

【huggingface】【pytorch-image-models】timm框架中使用albumentations库数据增广

文章目录 一、前言二、实操2.1 声明库2.2 定义你的数据增广算子2.3 加入其中 一、前言 问题是这样的&#xff0c;在使用timm框架训练时&#xff0c;发现数据增广不够&#xff0c;想用Albumentations库的数据增广&#xff0c;怎么把后者嵌入到前者的训练中。 其实也是比较简单…

通过Docker搭建4节点的Tendermint集群

Tendermint&#xff1a;0.34.24 Docker&#xff1a;20.10.21 Docker-Compose&#xff1a;2.20.2 OS&#xff1a;Ubuntu 20.04 Go&#xff1a;1.19.2 Linux/amd64 1 修改Tendermint源码 1.1 修改监听IP 为什么要将127.0.1修改成0.0.0.0呢&#xff1f;因为容器内的服务如果是以…

CHS_02.1.4+操作系统体系结构 二

CHS_02.1.4操作系统体系结构 二 操作系统的结构 上篇文章我们只介绍过宏内核 也就是大内核以及微内核分层结构的操作系统模块化是一种很经典的程序设计思想宏内核和微内核外核 操作系统的结构 上篇文章我们只介绍过宏内核 也就是大内核以及微内核 今年大纲又增加了分层结构 模块…

【从零开始学技术】Fiddler 抓取 https 请求大全

1.Fiddler代理浏览器设置 注意浏览器代理区别 Chrome/IE浏览器使用的都是系统代理设置 在chrome浏览器的设置中搜索代理&#xff0c;可以看到 打开IE浏览器&#xff0c;选择设置->Internet选项 Firefox浏览器使用的是单独的一套代理系统 在Firefox的代理设置中&#xff0c;我…

设计模式之外观模式【结构型模式】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档> 学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某…

K8S--持久卷(PersistentVolume)的用法

原文网址&#xff1a;K8S--持久卷(PersistentVolume)的用法-CSDN博客 简介 本文介绍K8S的持久卷(PersistentVolume)的用法。 目标&#xff1a;用持久卷的方式将主机的磁盘与容器磁盘映射&#xff0c;安装nginx并运行。 --------------------------------------------------…

使用电脑多年的你不可不知:移动机械硬盘的正确使用姿势

前言 随着科技的发展&#xff0c;小伙伴手边或多或少都有移动硬盘这个存储设备。上班族用来存储资料&#xff0c;家人用来存放回忆。但移动机械硬盘的使用过程中是有注意事项的&#xff0c;你知道多少移动机械硬盘的使用注意事项呢&#xff1f; 今天小白就跟各位小伙伴来唠唠…