视觉SLAM十四讲|【四】误差Jacobian推导

视觉SLAM十四讲|【四】误差Jacobian推导

预积分误差递推公式

ω = 1 2 ( ( ω b k + n k g − b k g ) + ( w b k + 1 + n k + 1 g − b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21((ωbk+nkgbkg)+(wbk+1+nk+1gbk+1g))
其中, w b k w_b^k wbk k k k时刻下body坐标系的角速度, n k g n_k^g nkg k k k时刻下陀螺仪白噪声, b k g b_k^g bkg k k k时刻下陀螺仪偏置量。 n k a n_k^a nka k k k时刻下加速度白噪声, b k a b_k^a bka k k k时刻下加速度偏置量。 k + 1 k+1 k+1时刻下记号同理。
q b i b k + 1 = q b i b k ⊗ [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbibk+1=qbibk[1,21ωδt]T
a = 1 2 ( q b i b k ( a b k + n b k − b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 − b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21(qbibk(abk+nbkbka)+qbibk+1(abk+1+nbk+1bk+1a))
α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 \alpha_{b_i b_{k+1}} = \alpha_{b_i b_{k}} + \beta_{b_i b_k} \delta t + \frac{1}{2}a \delta t^2 αbibk+1=αbibk+βbibkδt+21aδt2
β b i b k + 1 = β b i b k + a δ t \beta_{b_i b_{k+1}} = \beta_{b_i b_{k}} + a\delta t βbibk+1=βbibk+aδt
b k + 1 a = b k a + n b k a δ t b_{k+1}^a = b_k^a + n_{b_k^a}\delta t bk+1a=bka+nbkaδt
b k + 1 g = b k g + n b k g δ t b_{k+1}^g = b_k^g + n_{b_k^g}\delta t bk+1g=bkg+nbkgδt

示例1

f 15 = δ α b i b k + 1 δ b k g f_{15} = \frac{\delta \alpha_{b_i b_{k+1}}}{\delta b_k^g} f15=δbkgδαbibk+1
由上面的递推公式可知
α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 \alpha_{b_i b_{k+1}} = \alpha_{b_i b_{k}} + \beta_{b_i b_k} \delta t + \frac{1}{2}a \delta t^2 αbibk+1=αbibk+βbibkδt+21aδt2
其中, α b i b k \alpha_{b_i b_{k}} αbibk β b i b k δ t \beta_{b_i b_k}\delta t βbibkδt都与 b k g b_k^g bkg无关,可以省略,而很容易看出 a a a中含有 q b i b k + 1 q_{b_i b_{k+1}} qbibk+1项,其中进一步含有对 b k g b_k^g bkg相关的元素,必须保留。因此进一步推得
f 15 = δ 1 2 a δ t 2 δ b k g f_{15} = \frac{\delta \frac{1}{2} a \delta t^2}{\delta b_k^g} f15=δbkgδ21aδt2
其中,
a = 1 2 ( q b i b k ( a b k + n b k − b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 − b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21(qbibk(abk+nbkbka)+qbibk+1(abk+1+nbk+1bk+1a))
q b i b k ( a b k + n b k − b k a ) q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) qbibk(abk+nbkbka)依然与 b k g b_k^g bkg无关,可以省略。
f 15 = δ 1 4 q b i b k + 1 ( a b k + 1 + n b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15=δbkgδ41qbibk+1(abk+1+nbk+1bk+1a)δt2
白噪声项不可知,拿掉
f 15 = δ 1 4 q b i b k + 1 ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_{k+1}} (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15=δbkgδ41qbibk+1(abk+1bk+1a)δt2
f 15 = δ 1 4 q b i b k + 1 ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_{k+1}} (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15=δbkgδ41qbibk+1(abk+1bk+1a)δt2
q b i b k + 1 = q b i b k ⊗ [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbibk+1=qbibk[1,21ωδt]T
f 15 = δ 1 4 q b i b k ⊗ [ 1 , 1 2 ω δ t ] T ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15=δbkgδ41qbibk[1,21ωδt]T(abk+1bk+1a)δt2
其中
ω = 1 2 ( ( ω b k + n k g − b k g ) + ( w b k + 1 + n k + 1 g − b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21((ωbk+nkgbkg)+(wbk+1+nk+1gbk+1g))
去除不可知的白噪声项
ω = 1 2 ( ( ω b k − b k g ) + ( w b k + 1 − b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k-b_k^g)+(w_b^{k+1}-b_{k+1}^g)) ω=21((ωbkbkg)+(wbk+1bk+1g))
由于 k + 1 k+1 k+1时刻的信息并不知道,在此处如果不使用中值积分,直接使用初始值,有
ω = ω b k − b k g \omega =\omega_b^k-b_k^g ω=ωbkbkg
f 15 = δ 1 4 q b i b k ⊗ [ 1 , 1 2 ( ω b k − b k g ) δ t ] T ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_k} \otimes [1, \frac{1}{2} (\omega_b^k-b_k^g) \delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15=δbkgδ41qbibk[1,21(ωbkbkg)δt]T(abk+1bk+1a)δt2
此时,为了便于计算,我们需要把四元数表示旋转转换为用旋转矩阵表示矩阵的旋转,得到
f 15 = 1 4 δ R b i b k exp ⁡ ( ( ( w b k − b k g ) δ t ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp(((w_b^k-b_k^g)\delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibkexp(((wbkbkg)δt))(abk+1bk+1a)δt2
观察式子,我们要想办法把 b k g b_k^g bkg拆出来。回顾上一章,李代数旋转有性质
l n ( R e x p ( ϕ ∧ ) ) ∨ = l n ( R ) ∨ + J r − 1 ϕ ln(Rexp(\phi^{\land}))^{\vee}=ln(R)^{\vee}+J_r^{-1}\phi ln(Rexp(ϕ))=ln(R)+Jr1ϕ
类似的,对于非对数情况,有
exp ⁡ ( ( ϕ + δ ϕ ) ∧ ) = exp ⁡ ( ϕ ∧ ) exp ⁡ ( ( J r ( ϕ ) δ ϕ ) ∧ ) \exp( (\phi + \delta\phi)^{\wedge} )= \exp(\phi^{\wedge})\exp((J_r(\phi)\delta\phi)^{\wedge}) exp((ϕ+δϕ))=exp(ϕ)exp((Jr(ϕ)δϕ))
lim ⁡ ϕ → 0 J r ( ϕ ) = I \lim_{\phi \rightarrow 0} J_r(\phi)=I ϕ0limJr(ϕ)=I
exp ⁡ ( ( ( w b k − b k g ) δ t ) ∧ = exp ⁡ ( ( w b k δ t ) ∧ ) exp ⁡ ( ( J r ( w b k δ t ) ( − b k g δ t ) ) ∧ ) \exp(((w_b^k-b_k^g)\delta t)^{\wedge}=\exp((w_b^k\delta t)^{\wedge})\exp((J_r(w_b^k\delta t)(-b_k^g \delta t))^{\wedge}) exp(((wbkbkg)δt)=exp((wbkδt))exp((Jr(wbkδt)(bkgδt)))
f 15 = 1 4 δ R b i b k exp ⁡ ( ( ( w b k − b k g ) δ t ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp(((w_b^k-b_k^g)\delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibkexp(((wbkbkg)δt))(abk+1bk+1a)δt2
f 15 = 1 4 δ R b i b k exp ⁡ ( ( w b k δ t ) ∧ ) exp ⁡ ( ( J r ( w b k δ t ) ( − b k g δ t ) ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp((w_b^k\delta t)^{\wedge})\exp((J_r(w_b^k\delta t)(-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibkexp((wbkδt))exp((Jr(wbkδt)(bkgδt)))(abk+1bk+1a)δt2
w b k δ t → 0 w_b^k\delta t \rightarrow0 wbkδt0
f 15 = 1 4 δ R b i b k exp ⁡ ( ( J r ( w b k δ t ) ( − b k g δ t ) ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp((J_r(w_b^k\delta t)(-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibkexp((Jr(wbkδt)(bkgδt)))(abk+1bk+1a)δt2
f 15 = 1 4 δ R b i b k exp ⁡ ( ( − b k g δ t ) ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp((-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibkexp((bkgδt)))(abk+1bk+1a)δt2
f 15 = 1 4 δ R b i b k ( I + ( − b k g δ t ) ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} (I+(-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibk(I+(bkgδt)))(abk+1bk+1a)δt2
f 15 = 1 4 δ R b i b k ( − b k g δ t ) ∧ ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} (-b_k^g \delta t)^{\wedge}(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibk(bkgδt)(abk+1bk+1a)δt2
使用伴随性质,有
f 15 = 1 4 δ R b i b k ( a b k + 1 − b k + 1 a ) ∧ ( b k g δ t ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} (a_b^{k+1} - b_{k+1}^a)^{\wedge}(b_k^g \delta t)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibk(abk+1bk+1a)(bkgδt)δt2
f 15 = 1 4 R b i b k ( a b k + 1 − b k + 1 a ) ∧ δ t 2 δ t f_{15}=\frac{1}{4} R_{b_i b_k} (a_b^{k+1} - b_{k+1}^a)^{\wedge} \delta t^2 \delta t f15=41Rbibk(abk+1bk+1a)δt2δt

示例2

g 12 = δ α b i b k + 1 δ n k g g_{12}=\frac{\delta \alpha_{b_i b_{k+1}}}{\delta n_k^g} g12=δnkgδαbibk+1
一看 n k g n_k^g nkg就知道又要找和旋转有关的量了。回顾递推公式,有
ω = 1 2 ( ( ω b k + n k g − b k g ) + ( w b k + 1 + n k + 1 g − b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21((ωbk+nkgbkg)+(wbk+1+nk+1gbk+1g))
q b i b k + 1 = q b i b k ⊗ [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbibk+1=qbibk[1,21ωδt]T
a = 1 2 ( q b i b k ( a b k + n b k − b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 − b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21(qbibk(abk+nbkbka)+qbibk+1(abk+1+nbk+1bk+1a))
α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 \alpha_{b_i b_{k+1}} = \alpha_{b_i b_{k}} + \beta_{b_i b_k} \delta t + \frac{1}{2}a \delta t^2 αbibk+1=αbibk+βbibkδt+21aδt2

g 12 = δ α b i b k + 1 δ n k g g_{12}=\frac{\delta \alpha_{b_i b_{k+1}}}{\delta n_k^g} g12=δnkgδαbibk+1
g 12 = δ 1 2 a δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{2}a \delta t^2}{\delta n_k^g} g12=δnkgδ21aδt2
a = 1 2 ( q b i b k ( a b k + n b k − b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 − b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21(qbibk(abk+nbkbka)+qbibk+1(abk+1+nbk+1bk+1a))
g 12 = δ 1 4 q b i b k + 1 ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{4}q_{b_i b_{k+1}} (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=δnkgδ41qbibk+1(abk+1bk+1a)δt2
又因为
q b i b k + 1 = q b i b k ⊗ [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbibk+1=qbibk[1,21ωδt]T
所以有
g 12 = δ 1 4 q b i b k ⊗ [ 1 , 1 2 ω δ t ] T ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{4}q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=δnkgδ41qbibk[1,21ωδt]T(abk+1bk+1a)δt2
ω = 1 2 ( ( ω b k + n k g − b k g ) + ( w b k + 1 + n k + 1 g − b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21((ωbk+nkgbkg)+(wbk+1+nk+1gbk+1g))
g 12 = δ 1 4 q b i b k ⊗ [ 1 , 1 2 ( ω b k + 1 2 n k g ) δ t ] T ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{4}q_{b_i b_k} \otimes [1, \frac{1}{2} (\omega_b^k+\frac{1}{2}n_k^g)\delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=δnkgδ41qbibk[1,21(ωbk+21nkg)δt]T(abk+1bk+1a)δt2
g 12 = 1 4 δ R b i b k exp ⁡ ( ( ( ω b k + 1 2 n k g ) δ t ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp(((\omega_b^k+\frac{1}{2}n_k^g)\delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=41δnkgδRbibkexp(((ωbk+21nkg)δt))(abk+1bk+1a)δt2
g 12 = 1 4 δ R b i b k ( exp ⁡ ( ( ω b k δ t ) ∧ ) ) ( exp ⁡ ( ( J r ( ω b k δ t ) 1 2 n k g δ t ) ∧ ) ) ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k} (\exp((\omega_b^k\delta t)^{\wedge}))(\exp((J_r(\omega_b^k\delta t)\frac{1}{2}n_k^g \delta t)^{\wedge}))(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=41δnkgδRbibk(exp((ωbkδt)))(exp((Jr(ωbkδt)21nkgδt)))(abk+1bk+1a)δt2
g 12 = 1 4 δ R b i b k ( exp ⁡ ( ( J r ( ω b k δ t ) 1 2 n k g δ t ) ∧ ) ) ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k}(\exp((J_r(\omega_b^k\delta t)\frac{1}{2}n_k^g \delta t)^{\wedge}))(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=41δnkgδRbibk(exp((Jr(ωbkδt)21nkgδt)))(abk+1bk+1a)δt2
g 12 = 1 4 δ R b i b k ( exp ⁡ ( ( 1 2 n k g δ t ) ∧ ) ) ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k}(\exp((\frac{1}{2}n_k^g \delta t)^{\wedge}))(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=41δnkgδRbibk(exp((21nkgδt)))(abk+1bk+1a)δt2
g 12 = 1 4 δ R b i b k ( ( 1 2 n k g δ t ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k}((\frac{1}{2}n_k^g \delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=41δnkgδRbibk((21nkgδt))(abk+1bk+1a)δt2
g 12 = − 1 4 δ R b i b k ( a b k + 1 − b k + 1 a ) ∧ ( 1 2 n k g δ t ) δ t 2 δ n k g g_{12}=-\frac{1}{4} \frac{\delta R_{b_i b_k}(a_b^{k+1} - b_{k+1}^a)^{\wedge} (\frac{1}{2}n_k^g \delta t)\delta t^2}{\delta n_k^g} g12=41δnkgδRbibk(abk+1bk+1a)(21nkgδt)δt2
g 12 = − 1 4 R b i b k ( a b k + 1 − b k + 1 a ) ∧ ( 1 2 δ t ) δ t 2 g_{12}=-\frac{1}{4} R_{b_i b_k}(a_b^{k+1} - b_{k+1}^a)^{\wedge} (\frac{1}{2} \delta t)\delta t^2 g12=41Rbibk(abk+1bk+1a)(21δt)δt2
g 12 = − 1 8 R b i b k ( a b k + 1 − b k + 1 a ) ∧ ( δ t ) δ t 2 g_{12}=-\frac{1}{8} R_{b_i b_k}(a_b^{k+1} - b_{k+1}^a)^{\wedge} (\delta t)\delta t^2 g12=81Rbibk(abk+1bk+1a)(δt)δt2

Levenberg-Marquardt方法证明

Levenberg (1944) 和 Marquardt (1963) 先后对高斯牛顿法进行了改进,求解过程中引入了阻尼因子
( J T J + μ I ) Δ x l m = − J T f , μ > 0 (J^TJ+\mu I) \Delta x_{lm} = -J^Tf,\mu >0 (JTJ+μI)Δxlm=JTf,μ>0
F ( x ) = 1 2 ∑ i ( f i ( x ) ) 2 F(x)=\frac{1}{2} \sum_i (f_i(x))^2 F(x)=21i(fi(x))2
J = δ f δ x J = \frac{\delta f}{\delta x} J=δxδf
F ′ ( x ) = ( J T f ) T F'(x)=(J^Tf)^T F(x)=(JTf)T
F ′ ′ ( x ) = J T J F''(x)=J^T J F′′(x)=JTJ

求证

J T J = V T Λ V J^TJ = V^T \Lambda V JTJ=VTΛV
Δ x l m = − ∑ j = 1 n v j T F ′ T λ j + μ v j \Delta x_{lm} = -\sum_{j=1}^n \frac{v_j^T F'^T}{\lambda_j + \mu} v_j Δxlm=j=1nλj+μvjTFTvj
由原来的式子
( J T J + μ I ) Δ x l m = − J T f (J^TJ+\mu I) \Delta x_{lm} = -J^Tf (JTJ+μI)Δxlm=JTf
进行代换有
( V T Λ V + μ I ) Δ x l m = − J T f (V^T \Lambda V+\mu I) \Delta x_{lm} = -J^Tf (VTΛV+μI)Δxlm=JTf
( V T Λ V + μ V T V ) Δ x l m = − J T f (V^T \Lambda V+\mu V^T V) \Delta x_{lm} = -J^Tf (VTΛV+μVTV)Δxlm=JTf
( V T Λ V + V T μ V ) Δ x l m = − J T f (V^T \Lambda V+V^T\mu V) \Delta x_{lm} = -J^Tf (VTΛV+VTμV)Δxlm=JTf
( V T Λ V + V T μ I V ) Δ x l m = − J T f (V^T \Lambda V+V^T\mu IV) \Delta x_{lm} = -J^Tf (VTΛV+VTμIV)Δxlm=JTf
( V T ( Λ + μ I ) V ) Δ x l m = − J T f (V^T (\Lambda + \mu I) V) \Delta x_{lm} = -J^Tf (VT(Λ+μI)V)Δxlm=JTf
因为
F ′ ( x ) = ( J T f ) T F'(x)=(J^Tf)^T F(x)=(JTf)T
故有
( V T ( Λ + μ I ) V ) Δ x l m = − F ′ T (V^T (\Lambda + \mu I) V) \Delta x_{lm} = -F'^T (VT(Λ+μI)V)Δxlm=FT
V = [ v 1 , v 2 , . . . v n ] V = [v_1, v_2, ... v_n] V=[v1,v2,...vn]
其中 v j v_j vj为列向量
V T = [ v 1 T , v 2 T , . . . v n T ] T V^T = [v_1^T, v_2^T, ... v_n^T]^T VT=[v1T,v2T,...vnT]T
Λ + μ I = [ λ 1 + μ λ 2 + μ λ 3 + μ . . . λ n + μ ] \Lambda + \mu I = \begin{bmatrix} \lambda_1+\mu & & & & \\ & \lambda_2+\mu & & & \\ & & \lambda_3+\mu & & \\ & & & ... & \\ & & & & \lambda_n+\mu \end{bmatrix} Λ+μI= λ1+μλ2+μλ3+μ...λn+μ
记为
D i a g ( λ i + μ ) Diag(\lambda_i+\mu) Diag(λi+μ)
V T D i a g ( λ i + μ ) V Δ x l m = − F ′ T V^TDiag(\lambda_i+\mu)V \Delta x_{lm} = -F'^T VTDiag(λi+μ)VΔxlm=FT
得证
Δ x l m = − ∑ j = 1 n v j T F ′ T λ j + μ v j \Delta x_{lm} = -\sum_{j=1}^n \frac{v_j^T F'^T}{\lambda_j + \mu} v_j Δxlm=j=1nλj+μvjTFTvj

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/607395.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LINUX基础培训三之文件和目录管理

前言、本章学习目标 了解LINUX文件类型及目录结构掌握LINUX文件的基本属性熟悉用户、用户组、其他的安全模型掌握LINUX文件和目录的常用管理 一、LINUX文件管理 1、什么是LINUX中的文件 在LINUX操作系统中有一个重要的概念:一切皆为文件。除了我们常说的文本文…

pytorch09:可视化工具-TensorBoard,实现卷积核和特征图可视化

目录 一、TensorBoard简介二、TensorBoard安装三、TensorBoard运行可视化四、TensorBoard详细使用4.1 SummaryWriter4.2 add_scalar()4.3 add_scalars()4.4 add_histogram()4.4.1实际项目开发使用 4.5 add_image()4.6 torchvision.utils.make_grid4.7 卷积核和特征图可视化4.7.…

Nature:物理所利用原位透射电子显微技术在分子尺度研究立方冰

冰是水在自然界中的固体形态,在大自然中也广泛存在,冰的结构及形成机理研究对云物理及低温储存物理至关重要,因此科学家们对冰的研究也历史久远。提到冰在较小尺度的存在形态,我们最容易想到的是雪花。如下图所示,雪花…

视频智能分析/边缘计算AI智能分析网关V4区域入侵检测算法如何配置?

边缘计算AI智能分析网关(V4版)部署了近40种AI算法模型,支持对接入的视频图像进行人、车、物、行为等实时检测分析,并上报识别结果,并能进行语音告警播放。算法配置后,即可对监控视频流进行实时检测&#xf…

(2017|NIPS,VQ-VAE,离散潜在)神经离散表示学习

Neural Discrete Representation Learning 公和众和号:EDPJ(添加 VX:CV_EDPJ 或直接进 Q 交流群:922230617 获取资料) 目录 0. 摘要 3. VQ-VAE 3.1 离散潜在变量 3.2 学习 3.3 先验 4. 实验 0. 摘要 学习在无…

【QML COOK】- 000-创建Project

1. 文件->New Project... 2. Application(Qt)->Qt Quick Application(compat) 3. 填好【名称】和【创建路径】 4. 选择CMake 5. 选择QT6.2 6. 直接【下一步】 7. 直接下一步 8. 直接下一步 9. 出现工程文件 10. 点击运行 11. 出现窗口

10亿数据高效插入MySQL最佳方案

写在文章开头 你好,我叫sharkchili,目前还是在一线奋斗的Java开发,经历过很多有意思的项目,也写过很多有意思的文章,是CSDN Java领域的博客专家,也是Java Guide的维护者之一,非常欢迎你关注我的…

【性能】【算法】for循环,性能提高

目录 ■提高性能的方法 ・原理 1.1.java处理中,计算阶乘,为什么展开循环可以提高效率 1.2.从cpu的流水线角度,再说明一下 1.3.介绍一下 cup的指令流水线 ■实际运用 1.求和 代码 结果 2.求阶乘 (性能提高效果明显&…

Debezium发布历史56

原文地址: https://debezium.io/blog/2019/05/23/tutorial-using-debezium-connectors-with-apache-pulsar/ 欢迎关注留言,我是收集整理小能手,工具翻译,仅供参考,笔芯笔芯. 将 Debezium 连接器与 Apache Pulsar 结合…

计算机网络——实验七

使用socket实现一个基于C/S架构的通信程序 (1)客户端发送给服务器请求,发送表征身份的用户名和密码("admin","123456"); (2)服务器根据客户端发来的信息验证身份,如果验证…

1. 两数之和(Java)

题目描述: 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你…

linux 使用多版本 go goenv.sh

创建goenv sh 文件 在 /usr/local/bin/ 下面创建一个goenv.sh 文件 内容如下 #!/bin/bash version$1 if [[ ${version} "" ]]; then version"1.6" fi GOROOTTMP/usr/local/lib/go${version} if [[ ! -d ${GOROOTTMP} ]]; then echo "go ${versi…

笔试案例2

文章目录 1、笔试案例22、思维导图 1、笔试案例2 09)查询学过「张三」老师授课的同学的信息 selects.*,c.cname,t.tname,sc.score from t_mysql_teacher t, t_mysql_course c, t_mysql_student s, t_mysql_score sc where t.tidc.cid and c.cidsc.cid and sc.sids…

简洁大气带进度条的URL跳转页面HTML源码

源码介绍 简洁大气带进度条的URL跳转页面HTML源码,记事本修改里面的内容即可,喜欢的同学可以拿去使用 获取方式: 蓝奏云:https://wfr.lanzout.com/ic1iZ1kj6yde CSDN免积分下载:https://download.csdn.net/download/huayula/88…

Java桶排序、基数排序、剪枝算法

桶排序算法 桶排序的基本思想是: 把数组 arr 划分为 n 个大小相同子区间(桶),每个子区间各自排序,最后合并 。计数排序是桶排序的一种特殊情况,可以把计数排序当成每个桶里只有一个元素的情况。 1.找出待…

答疑解惑:核技术利用辐射安全与防护考核

前言 最近通过了《核技术利用辐射安全与防护考核》,顺利拿到了合格证。这是从事与辐射相关行业所需要的一个基本证书,考试并不难,在此写篇博客记录一下主要的知识点。 需要这个证书的行业常见的有医疗方面的,如放疗,…

黑马苍穹外卖学习Day3

目录 公共字段自动填充问题分析实现思路代码实现 新增菜品需求分析和设计接口设计代码开发开发文件上传接口功能开发 菜品分页查询需求分析和设计代码开发 菜品删除功能需求分析与设计代码实现代码优化 修改菜品需求分析和设计代码实现 公共字段自动填充 问题分析 员工表和分…

el-button点击后不恢复原样

1、单纯的span点击不恢复原样 let target event.target;if(target.nodeName "SPAN"){target event.target.parentNode;}target.blur();将此句加入到函数中即可,不用管语句中出现的红色下划线 2、假如是点击其他标签,譬如带有图标的什么 将…

静态网页设计——崩坏3(HTML+CSS+JavaScript)

前言 声明:该文章只是做技术分享,若侵权请联系我删除。!! 感谢大佬的视频: 使用技术:HTMLCSSJS(静态网页设计) 主要内容:对游戏崩坏3进行简单介绍。 https://www.bilib…

Codeforces Round 761 (Div. 2) D2. Too Many Impostors (hard version)(交互+构造 最小次数)

题目 n(6<n<1e4&#xff0c;n是3的倍数)个人&#xff0c;其中k个人是好人&#xff0c;n-k个人是坏人 k是未知的&#xff0c;但保证1/3n<k<2/3n&#xff0c;你可以询问若干次&#xff0c; 每次你可以选择三个不同的人a,b,c&#xff0c;系统告诉你这三个人中好人更…