Spark---RDD算子(单值类型转换算子)

文章目录

  • 1.RDD算子介绍
  • 2.转换算子
      • 2.1 Value类型
          • 2.1.1 map
          • 2.1.2 mapPartitions
          • 2.1.3 mapPartitionsWithIndex
          • 2.1.4 flatMap
          • 2.1.5 glom
          • 2.1.6 groupBy
          • 2.1.7 filter
          • 2.1.8 sample
          • 2.1.9 distinct
          • 2.1.10 coalesce
          • 2.1.11 repartition
          • 2.1.12 sortBy

1.RDD算子介绍

RDD算子是用于对RDD进行转换(Transformation)或行动(Action)操作的方法或函数。通俗来讲,RDD算子就是RDD中的函数或者方法,根据其功能,RDD算子可以分为两大类:
转换算子(Transformation): 转换算子用于从一个RDD生成一个新的RDD,但是原始RDD保持不变。常见的转换算子包括map、filter、flatMap等,它们通过对RDD的每个元素执行相应的操作来生成新的RDD。
行动算子(Action): 行动算子触发对RDD的实际计算,并返回计算结果或将结果写入外部存储系统。与转换算子不同,行动算子会导致Spark作业的执行。如collect方法。

2.转换算子

RDD 根据数据处理方式的不同将算子整体上分为:
Value 类型:对一个RDD进行操作或行动,生成一个新的RDD。
双 Value 类型:对两个RDD进行操作或行动,生成一个新的RDD。
Key-Value类型:对键值对进行操作,如reduceByKey((x, y),按照key对value进行合并。

2.1 Value类型

2.1.1 map

将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。

函数定义
def map[U: ClassTag](f: T => U): RDD[U]

代码实现:

    //建立与Spark框架的连接val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件val sparkRdd = new SparkContext(rdd) //读取配置文件val mapRdd: RDD[Int] = sparkRdd.makeRDD(List(1, 2, 3, 4))//对mapRdd进行转换val mapRdd1 = mapRdd.map(num => num * 2)//对mapRdd1进行转换val mapRdd2 = mapRdd1.map(num => num + "->")mapRdd2.collect().foreach(print)sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.2 mapPartitions

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。

函数定义
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]

Map 算子是分区内一个数据一个数据的执行,类似于串行操作。而 mapPartitions 算子是以分区为单位进行批处理操作。

mapPartitions在处理数据的时候因为是批处理,相对于map来说处理效率较高,但是如果数据量较大的情况下使用mapPartitions可能会造成内存溢出,因为mapPartitions会将分区内的数据全部加载到内存中。此时更推荐使用map。

2.1.3 mapPartitionsWithIndex

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。

函数定义
def mapPartitionsWithIndex[U: ClassTag](
f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]

实现只保留第二个分区的数据

    val mapRdd: RDD[Int] = sparkRdd.makeRDD(List(1, 2, 3, 4),2)val newRdd: RDD[Int] = mapRdd.mapPartitionsWithIndex((index, iterator) => {if (index == 1) iteratorelse Nil.iterator})newRdd.collect().foreach(println)
2.1.4 flatMap

将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射

       //建立与Spark框架的连接val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件val sparkRdd = new SparkContext(rdd) //读取配置文件val rdd1: RDD[List[Int]] = sparkRdd.makeRDD(List(List(1, 2), List(3, 4)))val rdd2: RDD[String] = sparkRdd.makeRDD(List("Hello Java", "Hello Scala"), 2)val frdd1: RDD[Int] =rdd1.flatMap(list=>{list})val frdd2: RDD[String] =rdd2.flatMap(str=>str.split(" "))frdd1.collect().foreach(println)frdd2.collect().foreach(println)sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.5 glom

将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变,glom函数的作用就是将一组数据转换为数组。

函数定义
def glom(): RDD[Array[T]]

    /建立与Spark框架的连接val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件val sparkRdd = new SparkContext(rdd) //读取配置文件val rdd1: RDD[Any] = sparkRdd.makeRDD(List(1,2,3,4),2)val value: RDD[Array[Any]] = rdd1.glom()value.collect().foreach(data=> println(data.mkString(",")))sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.6 groupBy

将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为 shuffle。 极限情况下,数据可能被分在同一个分区中

函数定义
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

	    //按照奇偶分组val rdd1: RDD[Int] = sparkRdd.makeRDD(List(1,2,3,4),2)val value = rdd1.groupBy(num => num % 2)value.collect().foreach(println)//将 List("Hello", "hive", "hbase", "Hadoop")根据单词首写字母进行分组。val rdd2: RDD[String] = sparkRdd.makeRDD(List("Hello", "hive", "hbase", "Hadoop"))val value1: RDD[(Char, Iterable[String])] = rdd2.groupBy(str => {str.charAt(0)})value1.collect().foreach(println)

在这里插入图片描述

2.1.7 filter

将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。

函数定义
def filter(f: T => Boolean): RDD[T]

	//获取偶数val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4), 1)val value1 = dataRDD.filter(_ % 2 == 0)
2.1.8 sample

函数定义
def sample(
withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T]

根据指定的规则从数据集中抽取数据

参数具体意义:
1.抽取数据不放回withReplacement: Boolean, 该参数表示抽取不放回,此时采用伯努利算法(false)fraction: Double,该参数表示抽取的几率,范围在[0,1]之间,0:全不取;1:全取;seed: Long = Utils.random.nextLong): RDD[T] 该参数表示随机数种子2.抽取数据放回withReplacement: Boolean, 该参数表示抽取放回,此时采用泊松算法(true)fraction: Double,该参数表示重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数seed: Long = Utils.random.nextLong): RDD[T] 该参数表示随机数种子
2.1.9 distinct

将数据集中重复的数据去重

def distinct()(implicit ord: Ordering[T] = null): RDD[T]
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

    val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 6)val value = dataRDD.distinct()

在这里插入图片描述

2.1.10 coalesce

根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本

def coalesce(numPartitions: Int, shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T]

    //初始Rdd采用6个分区val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 6)//将分区数量缩减至2个val value = dataRDD.coalesce(2)

在coalesce中默认不开启shuffle,在进行分区缩减的时候,数据不会被打散。
在这里插入图片描述

2.1.11 repartition

def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

repartition内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的 RDD,repartition操作都可以完成,因为无论如何都会经 shuffle 过程。
在这里插入图片描述

	//将分区数量从2个提升至4个val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 2)val dataRDD1 = dataRDD.repartition(4)
2.1.12 sortBy

该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一致。中间存在 shuffle 的过程

def sortBy[K](
f: (T) => K, 该参数表述用于处理的函数
ascending: Boolean = true, 该参数表示是否升序排序
numPartitions: Int = this.partitions.length) 该参数表示设置分区数量
(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]

    val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 2)//按照初始数据降序排列val dataRDD1 = dataRDD.sortBy(num => num, false, 4)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/605896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

15K star! 搭建个人PDF工具箱,和广告、泄密说拜拜

我相信很多人都曾经遇到过这样的麻烦:一大堆PDF文档摆在面前要处理,拆分、标页码、调顺序、加签名。手忙脚乱的在网上找了几个工具,但是要么需要付费,要么各种广告还不好用,更容易出现隐私泄露的问题。 今天我们推荐的…

轨迹合并 合并轨迹

搜索微信小程序 merge gpx

测试电脑的公网ip

发现ip地址总是变化,想要了解变化规律 操作 反复关闭打开浏览器,查询ip地址,共查询了15次。出现了5种不同的地址,还好,不是无穷的。

python 各级目录文件读取

目录结构 import pytestdef test_01():# 同级文件with open(1.txt, r, encodingutf-8) as file:content file.read()print(content)def test_02():# 同级目录的下的文件with open(rupfile/2.txt, r, encodingutf-8) as file:content file.read()print(content)def test_03():…

IDEA[Debug]简单说明

目录 🥞1.打断点 🌭2.第一组按钮 🧂3.第二组按钮 🥓4.参数查看 1.打断点 1.在需要断点处打上断点,然后点击debug运行 2.执行debug,直接执行到断点处 2.第一组按钮 共有8按钮,从左往右依…

Linux实验——页面置换算法模拟

页面置换算法模拟 【实验目的】 (1)理解虚拟内存管理的原理和技术。 (2)掌握请求分页存储管理的思想。 (3)理解常用页面置换算法的思想。 【实验原理/实验基础知识】 存储器是计算机系统的重要资源之…

可怜的小猪

题目 有 buckets 桶液体,其中 正好有一桶 含有毒药,其余装的都是水。它们从外观看起来都一样。为了弄清楚哪只水桶含有毒药,你可以喂一些猪喝,通过观察猪是否会死进行判断。不幸的是,你只有 minutesToTest 分钟时间来…

msvcp140.dll丢失的解决方法,从两个方向解决msvcp140.dll丢失

在Windows操作系统上,msvcp140.dll是Visual C Redistributable for Visual Studio 2015的一部分,如果msvcp140.dll文件丢失,可能在尝试启动使用C运行时库的程序时遇到错误,应用程序可能也会相应的无法打开,那么有什么m…

Qt/C++摄像头采集/二维码解析/同时采集多路/图片传输/分辨率帧率可调/自动重连

一、前言 本地摄像头的采集可以有多种方式,一般本地摄像头会通过USB的方式连接,在嵌入式上可能大部分是CMOS之类的软带的接口,这些都统称本地摄像头,和网络摄像头最大区别就是一个是通过网络来通信,一个是直接本地通信…

浅谈顺序表基本操作

🤷‍♀️🤷‍♀️🤷‍♀️ 今天给大家带来的是数据结构——顺序表的实现(增删查改)。 清风的CSDN博客主页 🎉欢迎👍点赞✍评论❤️收藏 😛😛😛希望我的文章能对你有所帮助&#xff…

JavaWeb基础(2)- Web概述、HTTP协议、Servlet、Request与Response

JavaWeb基础(2)- Web概述、HTTP协议、Servlet、Request与Response 文章目录 JavaWeb基础(2)- Web概述、HTTP协议、Servlet、Request与Response3 Web概述3.1 Web和JavaWeb的概念3.2 JavaWeb技术栈3.2.1 B/S架构**3.2.2 静态资源**3…

不带控制器打包exe,转pdf文件时失败的原因

加了注释的两条代码后,控制器会显示一个docx转pdf的进度条。这个进度条需要控制器的实现,如果转exe不带控制器的话,当点击转换为pdf的按钮就会导致程序出错和闪退。 __init__.py文件的入口

Netplan介绍

1 介绍 1.1 简介 Netplan是一个抽象网络配置描述器。通过netplan命令,你只需用一个 YAML文件描述每个网络接口所需配置。netplan并不关系底层管理工具是NetworkManager还是networkd。 它是一个在 Linux 系统上进行网络配置的实用程序。您创建所需接口的描述并定义…

java: 5-3 for

文章目录 1. for1.1 基本语法1.2 练习1.3 执行流程1.4 细节1.5 编程思想 (练习) 1. for 1.1 基本语法 for 关键字,表示循环控制for 有四要素: (1)循环变量初始化(2)循环条件(3)循环操作(4)循环变量迭代循环操作 , 这里可以有多条语句,也就是我们要循环…

FreeRTOS学习第6篇–任务状态挂起恢复删除等操作

目录 FreeRTOS学习第6篇--任务状态挂起恢复删除等操作任务的状态设计实验IRReceiver_Task任务相关代码片段实验现象本文中使用的测试工程 FreeRTOS学习第6篇–任务状态挂起恢复删除等操作 本文目标:学习与使用FreeRTOS中的几项操作,有挂起恢复删除等操作…

在MeshLab中创建简单的几何对象

文章目录 立方体和平面网格正多面体圆形相关球类隐式曲面 在Filters->Create New Mesh Layer的子菜单中,提供了大量几何对象,列表如下 菜单指令图形菜单指令图形Dodecahedron正十二面体Icosahedron正二十面体Tetrahedron正四面体Octahedron正八面体B…

Kafka(五)生产者

目录 Kafka生产者1 配置生产者bootstrap.serverskey.serializervalue.serializerclient.id""acksallbuffer.memory33554432(32MB)compression.typenonebatch.size16384(16KB)max.in.flight.requests.per.connection5max.request.size1048576(1MB)receive.buffer.byte…

xdoj托普利兹矩阵

#include <stdio.h> int main() {char Hn0,Cn0;int i0,n,j,h[10],c[10],a[10][10];while(Hn!\n)//输入 行向量{scanf("%d",&h[i]);i;scanf("%c",&Hn);}i0;while(Cn!\n)//输入 列向量{scanf("%d",&c[i]);i;scanf("%c&quo…

目标检测中的常见指标

概念引入&#xff1a; TP&#xff1a;True Positive IoU > 阈值 检测框数量 FP: False Positive IoU < 阈值 检测框数量 FN: False Negative 漏检框数量 Precision:查准率 Recall:查全率&#xff08;召回率&#xff09; AP&am…

【精通C语言】:分支结构switch语句的灵活运用

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; C语言详解 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1;前言一、switch语句1.1 语法1.2 代码示例 二、switch的控制语句2.1 break2.2 defualt子句 三、…