在 WSL2 中使用 NVIDIA Docker 进行全栈开发和深度学习 TensorFlow pytorch GPU 加速

在 WSL2 中使用 NVIDIA Docker 进行全栈开发和深度学习 TensorFlow pytorch GPU 加速

0. 背景

0.1 起源

  • 生产环境都是在 k8d pod 中运行,直接在容器中开发不好嘛?
  • 每次换电脑,都要配配配,呸呸呸
  • 新电脑只安装日常用的软件不好嘛,环境变量配配配,各种日常软件和开发软件到处拉💩
  • 虚拟机呗,怎么调用 GPU 是个问题,hyper-v 好像是可以魔改配置实现,又得改改改。改好了本地能跑了,生产给你报错报错错错错
  • 到处拉💩,文件弄乱了怎么办,容器直接销毁重建就完事,分分钟解决。电脑重装再配环境也遭不住

0.2. 容器化开发之后

  • 宿主机电脑随便换,随便重装。重装之后我只要 上网 + wsl --install + get docker + docker compose up -d 就完事了
  • 换 macOS?没事,docker compsoe up -d
  • 换 Windows?没事,docker compose up -d
  • 没电脑?没事,搞台远程机子 ssh + docker compose up -d
  • 电脑炸了?没事,所有 git 修改都在远端有一份。开发环境换台机子 docker compose up -d 继续

0.3 不足

  • 如果是做 k8s 开发的,估计不行,起本地集群建议用 vagrant。本质上一个容器根本无法解决这个问题
  • 如果没有机器不支持 systemd 没法搞,比如公司只给提供开发容器环境(只能操作给你的容器),这个情况下目前正在解决,使用 ansible 重写 Dockerfile 里面的脚本,摆脱容器限制。主要区别就是环境安装过程在本地还是在远端

1. 前置条件

1.1. 安装系统

Windows 10 版本 2004 及更高版本(内部版本 19041 及更高版本)或 Windows 11

跳过

1.2. 处理好网络环境

安装过程中需要访问国际网络,自行处理好。建议开启 tun 模式

2. 准备 WSL

2.1. 安装 WSL

在管理员模式下打开 PowerShell 或 Windows 命令提示符

wsl --install

安装完成,重启电脑

2.2. 首次打开 WSL

重启完成后,打开 powershell,输入

wsl

此时应该会提示为 Linux 发行版创建“用户名”和“密码”

如果这里提示没有安装 Linux 发行版,那么这里可以再次执行 wsl --install,会自动安装 Ubuntu 22.04 LTS

2.3. 设置 root 密码

sudo passwd

2.4. 换源

切换到 root 用户,执行下面命令换源

cat <<'EOF' > /etc/apt/sources.list
# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb https://mirror.nju.edu.cn/ubuntu/ jammy main restricted universe multiverse
# deb-src https://mirror.nju.edu.cn/ubuntu/ jammy main restricted universe multiverse
deb https://mirror.nju.edu.cn/ubuntu/ jammy-updates main restricted universe multiverse
# deb-src https://mirror.nju.edu.cn/ubuntu/ jammy-updates main restricted universe multiverse
deb https://mirror.nju.edu.cn/ubuntu/ jammy-backports main restricted universe multiverse
# deb-src https://mirror.nju.edu.cn/ubuntu/ jammy-backports main restricted universe multiversedeb https://mirror.nju.edu.cn/ubuntu/ jammy-security main restricted universe multiverse
# deb-src https://mirror.nju.edu.cn/ubuntu/ jammy-security main restricted universe multiverse# deb http://security.ubuntu.com/ubuntu/ jammy-security main restricted universe multiverse
# # deb-src http://security.ubuntu.com/ubuntu/ jammy-security main restricted universe multiverse# 预发布软件源,不建议启用
# deb https://mirror.nju.edu.cn/ubuntu/ jammy-proposed main restricted universe multiverse
# # deb-src https://mirror.nju.edu.cn/ubuntu/ jammy-proposed main restricted universe multiverse
EOF

出处:南京大学镜像站 -> https://mirror.nju.edu.cn/mirrorz-help/ubuntu/?mirror=NJU

2.5.(可选)迁移 WSL 磁盘目录

这里以迁移到 D:\hyper-v\ubu1\ubu1.vhdx 为例

2.6. 设置默认用户

你的用户名 替换成你设置的用户名,然后在 WSL 中执行

sudo echo "[user]\ndefault=你的用户名" >> /etc/wsl.conf

比如我的用户名是 linux,那么我执行的命令就是 sudo echo "[user]\ndefault=linux" >> /etc/wsl.conf

2.7. 导出磁盘镜像

在 Windows poweshell 中执行

wsl --export Ubuntu d:\hyper-v\ubu1\ubu1.vhdx --vhd

2.8. 删除原系统

wsl --unregister Ubuntu

2.9. 导入新系统

wsl --import-in-place ubu1 d:\hyper-v\ubu1\ubu1.vhdx

3. 配置 NVIDIA Docker

3.1. 安装 Docker

参考:docker 官网 和 南京大学镜像 -> https://mirror.nju.edu.cn/mirrorz-help/docker-ce/?mirror=NJU

在 powershell 中输入 wsl,进入 WSL 中,执行

首先安装依赖:

sudo apt-get update
sudo apt-get install ca-certificates curl gnupg

信任 Docker 的 GPG 公钥并添加仓库:

sudo install -m 0755 -d /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
sudo chmod a+r /etc/apt/keyrings/docker.gpg
echo \"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] https://mirror.nju.edu.cn/docker-ce/linux/ubuntu \"$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

最后安装 Docker

sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin

3.2. 配置普通用户直接使用 Docker 命令

sudo gpasswd -a $USER docker
newgrp docker

3.3 安装 NVIDIA 支持

参考:微软 WSL 官方文档:https://learn.microsoft.com/zh-cn/windows/wsl/tutorials/gpu-compute

通过运行以下命令为 NVIDIA 容器工具包设置稳定存储库:

distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-docker-keyring.gpg
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-docker-keyring.gpg] https://#g' | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

安装 NVIDIA 运行时包和依赖项

sudo apt-get update
sudo apt-get install -y nvidia-docker2

3.4 Docker 换源

参考:南京大学镜像

修改配置文件

sudo nano /etc/docker/daemon.json

正常走到这一步应该是这样的
在这里插入图片描述
添加一行

,"registry-mirrors": ["https://docker.nju.edu.cn/"]

在这里插入图片描述

按下 ctrl+o 再按下 回车 保存文件

再按下 ctrl+x 退出编辑器

检查一下结果,cat /etc/docker/daemon.json
在这里插入图片描述
重启 Docker

sudo systemctl restart docker

4. 拉取 & 运行 Docker 镜像

这个全栈开发镜像是我自己构建的
Dockfile 在 GitHub 仓库这里 https://github.com/james-curtis/code-os-debian
包含了

  • zsh
  • ohmyzsh
  • powerlevel10k
  • 中文语言包,gui 下微软雅黑字体支持
  • nodejs、nvm
  • openssh
  • c++
  • wslg 透传到 Windows 母机支持
  • Python、conda、pdm
    temurin 8、11、17 jdk,jenv
    docker cli
    TensorFlow
    pytorch
    cuda 11.8、cudatoolkit

4.1. 拉取镜像

由于镜像较大,建议单独拉取

  • GPU 支持镜像(9.94 GB):jamescurtisfoxmail/code-os:latest-gpu
  • 仅 CPU 支持镜像(2.77 GB):jamescurtisfoxmail/code-os:latest

这里以 GPU 支持镜像为例

docker pull jamescurtisfoxmail/code-os:latest-gpu

4.2. 下载 compose 配置

下载 Docker compose 配置

git clone https://github.com/james-curtis/code-os-debian.git

4.3. 启动 Docker compose

启动 docker compose

cd code-os-debian/docker/wsl/
bash run-gpu.sh

可以看到已经启动成功了
在这里插入图片描述

5. 检验成果

先进入 Docker 容器

source .gpu-envrc
docker compose exec os zsh

在这里插入图片描述

如果字体乱码,应该是没有配置 powerlevel10k 的 MesloLGS NF 字体支持。

我使用的终端是 tabby 全平台支持

在这里插入图片描述
在项目中有这几个字体,复制到 c:\windows\fonts 中即可
在这里插入图片描述

5.1. 检测 wslg 支持

xeyes 会显示一个跟随鼠标的小眼睛

xclock 是显示一个时钟
在这里插入图片描述

5.2. 检测 NVIDIA 支持

nvidia-smi

在这里插入图片描述
我这里显示出了母机的 3060,说明 Docker 已经检测到这张显卡

5.3. 检测 TensorFlow支持

5.3.1 TensorFlow CPU

python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

在这里插入图片描述

打印出了张量

5.3.2 TensorFlow GPU

python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"

在这里插入图片描述

可以看到 TensorFlow 也检测到了显卡

5.3.3 安装 kaggle cli

pip install kaggle

登录 kaggle 下载登录凭据,下载到 ~/.kaggle/kaggle.json

官方教程 https://github.com/Kaggle/kaggle-api#api-credentials

设置权限

chmod 600 ~/.kaggle/kaggle.json

在这里插入图片描述

5.3.4 检测 TensorFlow GPU 负载支持

这里我们使用 kaggle cli 下载比赛中别人提交的代码进行测试,https://www.kaggle.com/code/hassanamin/tensorflow-mnist-gpu-tutorial

在这里插入图片描述
复制下载命令

在这里插入图片描述

启动 openssh-server

sudo service ssh start

输入密码 linux

默认用户和密码都是 linux

root 用户名也是 linux

在这里插入图片描述

打开 vscode 进行远程连接
需要先下载远程开发插件 ms-vscode-remote.vscode-remote-extensionpack
在这里插入图片描述
点击左下角的蓝标,会弹出命令列表,选择 Connect to host

在这里插入图片描述
直接连接 localhost 即可

为什么可以直接通过 localhost 连接有两个原因

  1. 微软支持宿主机直接访问 WSL 的监听端口
  2. docker compose 中设置的 network 类型是 host,也就是和 WSL 公用一个网络

在这里插入图片描述

点击右侧的 Connect

在这里插入图片描述
会提示选择平台和输入密码

完成之后即可进行远程开发

进入刚刚 kaggle 的项目

这里由于的刚刚我下载的目录是 /tmp/kaggle/tf 所以这里我需要打开这个目录

在这里插入图片描述
安装插件
需要安装的插件有

  • donjayamanne.python-extension-pack
  • donjayamanne.python-extension-pack

安装完成之后需要加载窗口

选择运行环境
选择 conda Python3.9 作为运行环境
在这里插入图片描述
逐个单元格运行试试效果

可以看到检测到 GPU 了
在这里插入图片描述
可以看到成功调用宿主机显卡
在这里插入图片描述
不过似乎没有使得显卡满载

5.4. 检测 pytorch cuda 支持

在 WSL 中执行

python3 -c "import torch;print(torch.cuda.is_available());"

在这里插入图片描述

这里我还没有换 vscode 的终端字体,所以乱码了,忽略即可

5.4.1 检测 pytorch GPU 负载支持

对于 pytorch,这里使用 https://www.kaggle.com/code/lyhue1991/pytorch-gpu-examples,作为测试 demo

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
可以看到成功调度 GPU

6. 检查 nodejs

node -v
nvm list

在这里插入图片描述

7. 检查 java

java -version
javac -version
jenv versions

在这里插入图片描述

8. 检查 c++

g++ -v
gcc -v

在这里插入图片描述

9. 容器卷

在 Dockerfile 中有写到

# =========== 配置 容器卷 =============
VOLUME [ "/mnt/workspace", "/mnt/data" ]

这两个目录都是持久化的,也就是 docker 容器销毁之后,只有这两个目录下的文件不会清理(重启不影响)

其中 /mnt/workspace 是映射到 WSL 中的,IO 性能比较差

/mnt/data 是没有映射的容器卷,IO 性能较好,建议项目都放到该目录下

至于 /home/linux 用户目录下的文件可以自己创建并映射容器卷

6. 参考文档

  • https://learn.microsoft.com/zh-cn/windows/wsl/install
  • https://docs.docker.com/engine/install/ubuntu/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/60551.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

INDEMIND:“大+小”多机协同,实现机器人商用场景全覆盖

随着商用清洁机器人进入越来越多的场景中&#xff0c;单一的中型机器人并不能有效覆盖所有区域&#xff0c;更加细分化的产品组合正在成为新的趋势。 产品形态的“新趋势” 在商用场景中&#xff0c;目前的商用清洁机器人几乎均是中大型的产品形态&#xff0c;较大的体型意味…

视频汇聚/视频云存储/视频监控管理平台EasyCVR新增首次登录强制修改密码

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。视频汇聚平台既具…

[JDK8下的HashMap类应用及源码分析] 数据结构、哈希碰撞、链表变红黑树

系列文章目录 [Java基础] StringBuffer 和 StringBuilder 类应用及源码分析 [Java基础] 数组应用及源码分析 [Java基础] String&#xff0c;分析内存地址&#xff0c;源码 [JDK8环境下的HashMap类应用及源码分析] 第一篇 空构造函数初始化 [JDK8环境下的HashMap类应用及源码分…

Vue3列表竖向滚动(包含使用swiper的翻页效果)

一、使用element-plus表格进行滚动&#xff1a; 可以满足的需求&#xff1a;表格一行一行竖向滚动&#xff0c;类似走马灯。 不能满足的需求&#xff1a;表格分页竖向滚动&#xff0c;有翻页的效果。 代码&#xff1a; <template><el-table:data"tableData"…

Redis——》Redis的部署方式对分布式锁的影响

推荐链接&#xff1a; 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…

Java常见的排序算法

排序分为内部排序和外部排序&#xff08;外部存储&#xff09; 常见的七大排序&#xff0c;这些都是内部排序 。 1、插入排序&#xff1a;直接插入排序 1、插入排序&#xff1a;每次将一个待排序的记录&#xff0c;按其关键字的大小插入到前面已排序好的记录序列 中的适当位置…

ChatGPT AIGC 一个指令总结Python所有知识点

在ChatGPT中,直接输入一个指令就可以生成Python的所有知识点大纲。 非常实用的ChatGPT功能。 AIGC ChatGPT ,BI商业智能, 可视化Tableau, PowerBI, FineReport, 数据库Mysql Oracle, Office, Python ,ETL Excel 2021 实操,函数,图表,大屏可视化 案例实战 http://t.…

Angular中使用drag and drop实现文件拖拽上传,及flask后端接收

效果&#xff1a;拖拽文件到组件上面时 边框变大变红 松手后发送到服务器(或者点击蓝字手动选择文件)并且把文件名显示在框内&#xff0c;美化还没做 html <div class"drapBox"><div id"drop" (dragenter)"dragenter($event)" (dragov…

redis 应用 4: HyperLogLog

我们先思考一个常见的业务问题&#xff1a;如果你负责开发维护一个大型的网站&#xff0c;有一天老板找产品经理要网站每个网页每天的 UV 数据&#xff0c;然后让你来开发这个统计模块&#xff0c;你会如何实现&#xff1f; img 如果统计 PV 那非常好办&#xff0c;给每个网页一…

后台管理系统:项目路由搭建与品牌管理

路由的搭建 先删除一些不需要的界面 然后发现跑不起来&#xff0c;我们需要去配置 删减成这样&#xff0c;然后自己新建需要的路由组件 改成这样&#xff0c;这里要注意。我们是在layout这个大的组件下面的&#xff0c;meta 中的title就是我们侧边栏的标题&#xff0c;icon可…

Java eight 解读流(Stream)、文件(File)、IO和异常处理的使用方法

目录 Java 流(Stream)、文件(File)和IO读取控制台输入读写文件FileInputStreamFileOutputStream Java目录 Java 异常处理 Java 流(Stream)、文件(File)和IO java.io 包几乎包含了所有操作输入、输出需要的类。所有这些流类代表了输入源和输出目标。 Java.io 包中的流支持很多种…

51页企业数字化转型战略实践与启示PPT(附400份转型资料)

本资料来源公开网络&#xff0c;仅供个人学习&#xff0c;请勿商用&#xff0c;如有侵权请联系删除&#xff0c;更多内容浏览公众号&#xff1a;智慧方案文库 企业数字化转型之路.pptx企业数字化转型大数据湖一体化平台项目建设方案PPT.pptx企业数字化转型大数据湖一体化运营管…

Angular安全专辑之四 —— 避免服务端可能的资源耗尽(NodeJS)

express-rate-limit是一个简单实用的npm包,用于在Express应用程序中实现速率限制。它可以帮助防止DDoS攻击和暴力破解,同时还允许对API端点进行流控。 express-rate-limit及其主要功能 express-rate-limit是Express框架的一个流行中间件,它允许根据IP地址或其他标准轻松地对请求…

U盘文件恢复软件推荐,这几款高效恢复数据!

“我真的可以算得上是一个u盘杀手了&#xff0c;好多资料保存在u盘中&#xff0c;但经常都会由于粗心导致u盘中的数据丢失。大家有什么u盘文件恢复软件可以推荐吗&#xff1f;救救我的u盘吧&#xff01;” 在现代社会&#xff0c;人手一个u盘一点也不夸张。尤其是学生党和打工人…

阿里云架构

负载均衡slb 分类以及应用场景 负载均衡slb clb 传统的负载均衡(原slb) 支持4层和7层(仅支持对uri(location),域名进行转发) 一般使用slb(clb) alb 应用负载均衡 只支持7层,整合了nginx负载均衡的各种功能,可以根据用户请求头,响应头 如果需要详细处理用户请求(浏…

华为数通方向HCIP-DataCom H12-821题库(单选题:141-160)

第141题 Router-LSA 能够描述不同的链路类型&#xff0c;不属于Router LSA 链路类型的是以下哪一项? A、Link Type 可以用来描述到末梢网络的连接&#xff0c;即 SubNet B、Link Type 可以用来描述到中转网络的连接&#xff0c;即 TranNet C、Link Type 可以用来描述到另一…

2023京东口腔护理赛道行业数据分析(京东销售数据分析)

近年来&#xff0c;口腔护理逐渐成为年轻人重视的健康领域&#xff0c;从口腔护理整体市场来看&#xff0c;牙膏和牙刷等基础口腔护理产品仍占据主导地位。不过&#xff0c;随着口腔护理市场逐步朝向精致化、专业化、多元化等方向发展&#xff0c;不少新兴口腔护理产品受到消费…

算法通关村第8关【白银】| 二叉树的深度和高度问题

1.最大深度问题 思路&#xff1a;递归三部曲 第一步&#xff1a;确定参数和返回值 题目要求求二叉树的深度&#xff0c;也就是有多少层&#xff0c;需要传递一个root从底层向上统计 int maxDepth(TreeNode root) 第二步&#xff1a;确定终止条件 当递归到null时就说明到底了…

SpringMVC中Controller层获取前端请求参数的几种方式

SpringMVC中Controller层获取前端请求参数的几种方式 1、SpringMVC自动绑定2、使用RequestParam 注解进行接收3、RequestBody注解&#xff08;1&#xff09; 使用实体来接收JSON&#xff08;2&#xff09;使用 Map 集合接收JSON&#xff08;3&#xff09; 使用 List集合接收JSO…

持续性能优化:确保应用保持高性能

在当今数字化时代&#xff0c;应用程序的性能已经成为用户体验和业务成功的关键因素之一。无论是Web应用、移动应用还是企业级软件&#xff0c;用户对于速度和响应性的要求越来越高。因此&#xff0c;持续性能优化已经成为保证应用在竞争激烈的市场中脱颖而出的重要策略。 什么…