时间序列预测 — VMD-LSTM实现单变量多步光伏预测(Tensorflow):单变量转为多变量预测多变量

目录

1 数据处理

1.1 导入库文件

1.2 导入数据集

​1.3 缺失值分析

2 VMD经验模态分解

2.1 VMD分解实验

2.2 VMD-LSTM预测思路

3 构造训练数据

4 LSTM模型训练

5 LSTM模型预测

5.1 分量预测

5.2 可视化


时间序列预测专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html

1 数据处理

1.1 导入库文件

import time
import datetime
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt  
from sampen import sampen2  # sampen库用于计算样本熵
from vmdpy import VMD  # VMD分解库
from itertools import cycleimport tensorflow as tf 
from sklearn.cluster import KMeans
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error 
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout, LSTM, GRU, Reshape, BatchNormalization
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam# 忽略警告信息
import warnings
warnings.filterwarnings('ignore'))  
plt.rcParams['font.sans-serif'] = ['SimHei']     # 显示中文
plt.rcParams['axes.unicode_minus'] = False  # 显示负号
plt.rcParams.update({'font.size':18})  #统一字体字号

1.2 导入数据集

实验数据集采用数据集8:新疆光伏风电数据集(下载链接),数据集包括组件温度(℃) 、温度(°)    气压(hPa)、湿度(%)、总辐射(W/m2)、直射辐射(W/m2)、散射辐射(W/m2)、实际发电功率(mw)特征,时间间隔15min。对数据进行可视化:

# 导入数据
data_raw = pd.read_excel("E:\\课题\\08数据集\\新疆风电光伏数据\\光伏2019.xlsx")
data_raw
from itertools import cycle
# 可视化数据
def visualize_data(data, row, col):cycol = cycle('bgrcmk')cols = list(data.columns)fig, axes = plt.subplots(row, col, figsize=(16, 4))fig.tight_layout()if row == 1 and col == 1:  # 处理只有1行1列的情况axes = [axes]  # 转换为列表,方便统一处理for i, ax in enumerate(axes.flat):if i < len(cols):ax.plot(data.iloc[:,i], c=next(cycol))ax.set_title(cols[i])else:ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图plt.subplots_adjust(hspace=0.6)plt.show()visualize_data(data_raw.iloc[:,1:], 2, 4)

​单独查看部分功率数据,发现有较强的规律性。

​1.3 缺失值分析

首先查看数据的信息,发现并没有缺失值

data_raw.info()

​ 进一步统计缺失值

data_raw.isnull().sum()

2 VMD经验模态分解

2.1 VMD分解实验

使用VMD将目标信号分解成若干个模态,进一步可视化分解结果

# VMD分解函数
# signal: 输入信号
# alpha: 正则化参数
# tau: 时间尺度参数
# K: 分量数量
# DC: 是否包括直流分量
# init: 初始化方法
# tol: 收敛容限
# n_ite: 最大迭代次数
def vmd_decompose(series=None, alpha=2000, tau=0, K=6, DC=0, init=1, tol=1e-7, draw=True): # 得到 VMD 分解后的各个分量、分解后的信号和频率imfs_vmd, imfs_hat, omega = VMD(series, alpha, tau, K, DC, init, tol)  # 将 VMD 分解分量转换为 DataFrame, 并重命名df_vmd = pd.DataFrame(imfs_vmd.T)df_vmd.columns = ['imf'+str(i) for i in range(K)]return df_vmd

因为只是单变量预测,只选取实际发电功率(mw)数据进行实验 

df_vmd = vmd_decompose(data_raw['实际发电功率(mw)'])  # 对 df_raw_data['AQI'] 进行 VMD 分解,并将结果赋值给 df_vmd
# 绘制 df_vmd 的数据,以子图形式显示每个分量
ax = df_vmd.plot(title='VMD Decomposition', figsize=(16,8), subplots=True,fontsize=16)
for a in ax:a.legend(loc='upper right',prop={'size': 14})plt.subplots_adjust(hspace=0.5)

​查看分解后的数据:

df_vmd

​这里我们验证一下分解效果,通过分解变量求和和实际功率值进行可视化比较,发现基本相同。

# 验证分解效果
plt.figure(dpi=100,figsize=(14,5))
plt.plot(df_vmd.iloc[:96*10,:-1].sum(axis=1))
plt.plot(data_raw['实际发电功率(mw)'][:96*10])
plt.legend(['VMD分解求和','原始负荷']) 
# 坐标描述
plt.xlabel('时间')
plt.ylabel('功率(kW)')

2.2 VMD-LSTM预测思路

这里利用VMD-LSTM进行预测的思路是通过VMD将原始功率分解为多个变量,然后将每个分解变量都进行预测,接着将预测的结果添加到历史数据中进行滚动预测,得到需要预测的步数,最后将每个分解变量的预测结果相加得到最终的预测结果。

3 构造训练数据

构造数据前先将数据变为数值类型

df_vmd = df_vmd.values

构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。

timesteps = 96*7 #构造x,为72个数据,表示每次用前72个数据作为一段
predict_steps = 12 #构造y,为12个数据,表示用后12个数据作为一段
length = 96 #预测多步,预测96个数据,每次预测96个,想想要怎么构造预测才能满足96?
feature_num = 7 #特征个数?

通过前timesteps个数据预测后面predict_steps个数据,需要对数据集进行滚动划分(也就是前timesteps行的数据和后predict_steps行的数据训练,后面预测时就可通过timesteps行数据预测未来的predict_steps行数据)。这里需要注意的是,因为是多变量预测多变量,特征就是标签(例如,前5行[imf_0, imf_1, imf_2, imf_3, imf_4, imf_5]预测第6行[imf_0, imf_1, imf_2, imf_3, imf_4, imf_5],划分数据集时,就用前5行当做train_x,第6行作为train_y,此时的train_y有多列,而不是只有1列)。

# 构造数据集,用于真正预测未来数据
# 整体的思路也就是,前面通过前timesteps个数据训练后面的predict_steps个未来数据
# 预测时取出前timesteps个数据预测未来的predict_steps个未来数据。
def create_dataset(datasetx, datasety=None, timesteps=96*7, predict_size=12):datax = []  # 构造xdatay = []  # 构造yfor each in range(len(datasetx) - timesteps - predict_size):x = datasetx[each:each + timesteps]# 判断是否是单变量分解还是多变量分解if datasety is not None:y = datasety[each + timesteps:each + timesteps + predict_size]else:y = datasetx[each + timesteps:each + timesteps + predict_size]datax.append(x)datay.append(y)return datax, datay

​数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型(变量和多变量的归一化不同,多变量归一化需要将X和Y分开归一化,不然会出现信息泄露的问题),此时的归一化相当于是单变量归一化,函数的定义如下:

# 数据归一化操作
def data_scaler(datax, datay=None, timesteps=36, predict_steps=6):# 数据归一化操作scaler1 = MinMaxScaler(feature_range=(0, 1))   datax = scaler1.fit_transform(datax)# 用前面的数据进行训练,留最后的数据进行预测# 判断是否是单变量分解还是多变量分解if datay is not None:scaler2 = MinMaxScaler(feature_range=(0, 1))datay = scaler2.fit_transform(datay)trainx, trainy = create_dataset(datax, datay, timesteps, predict_steps)trainx = np.array(trainx)trainy = np.array(trainy)return trainx, trainy, scaler1, scaler2else:trainx, trainy = create_dataset(datax, timesteps=timesteps, predict_size=predict_steps)trainx = np.array(trainx)trainy = np.array(trainy)return trainx, trainy, scaler1, None

然后分解的数据进行划分和归一化。通过前7天的96*7行数据预测后一天的96个数据,需要对数据集进行滚动划分(也就是前96*7行的数据和后12行的数据训练,后面预测时就可通过96*7行数据测未来的12行数据,然后将12行预测值添加到历史数据中,历史数据变为96*7+12个,再取出后96*7行数据进行预测,得到12行预测值,滚动进行预测直到预测完成,注意此时的预测值是行而不是个)

trainx, trainy, scalerx, scalery = data_scaler(df_vmd, timesteps=timesteps, predict_steps=predict_steps)

4 LSTM模型训练

首先划分训练集、测试集、验证数据:

train_x = trainx[:int(trainx.shape[0] * 0.8)]
train_y = trainy[:int(trainy.shape[0] * 0.8)]
test_x = trainx[int(trainx.shape[0] * 0.8):]
test_y = trainy[int(trainy.shape[0] * 0.8):]
test_x.shape, test_y.shape, train_x.shape, train_y.shape

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含64个样本(建议使用GPU进行训练)。

# 搭建LSTM训练函数
def LSTM_model_train(trainx, trainy, valx, valy, timesteps, predict_steps):# 调用GPU加速gpus = tf.config.experimental.list_physical_devices(device_type='GPU')for gpu in gpus:tf.config.experimental.set_memory_growth(gpu, True)# 搭建LSTM模型start_time = datetime.datetime.now()model = Sequential()model.add(LSTM(128, input_shape=(timesteps, trainx.shape[2]), return_sequences=True))model.add(BatchNormalization())  # 添加BatchNormalization层model.add(Dropout(0.2))model.add(LSTM(64, return_sequences=False))model.add(Dense(predict_steps * trainy.shape[2]))model.add(Reshape((predict_steps, trainy.shape[2])))# 使用自定义的Adam优化器opt = Adam(learning_rate=0.001)model.compile(loss="mean_squared_error", optimizer=opt)# 添加早停和模型保存的回调函数es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10)mc = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min', save_best_only=True)# 训练模型,这里我假设你有一个验证集(valx, valy)history = model.fit(trainx, trainy, validation_data=(valx, valy), epochs=50, batch_size=64, callbacks=[es, mc])# 记录训练损失loss_history = history.history['loss']end_time = datetime.datetime.now()running_time = end_time - start_timereturn model, loss_history, running_time

然后进行训练,将训练的模型、损失和训练时间保存。

#模型训练
model, loss_history, running_time = LSTM_model_train(train_x, train_y, test_x, test_y, timesteps, predict_steps)
# 将模型保存为文件
model.save('emd_lstm_model.h5')

5 LSTM模型预测

5.1 分量预测

下面介绍文章中最重要,也是真正没有未来特征的情况下预测未来标签的方法。整体的思路也就是取出预测前96*6行数据预测未来的12行数据,然后见12行数据添加进历史数据,再预测12行数据,滚动预测。因为每次只能预测12行数据,但是我要预测96个数据,所以采用的就是循环预测的思路。每次预测的12行数据,添加到数据集中充当预测x,然后在预测新的12行y,再添加到预测x列表中,如此往复,最终预测出96行。(注意多变量预测多变量预测的是多列,预测单变量只有一列)

# #滚动predict
# #因为每次只能预测12个数据,但是我要预测96个数据,所以采用的就是循环预测的思路。
# #每次预测的12个数据,添加到数据集中充当预测x,然后在预测新的12个y,再添加到预测x列表中,如此往复,最终预测出96个点。
def predict_using_LSTM(model, data, timesteps, predict_steps, feature_num, length, scaler):predict_xlist = np.array(data).reshape(1, timesteps, feature_num) predict_y = np.array([]).reshape(0, feature_num)  # 初始化为空的二维数组print('predict_xlist', predict_xlist.shape)while len(predict_y) < length:# 从最新的predict_xlist取出timesteps个数据,预测新的predict_steps个数据predictx = predict_xlist[:,-timesteps:,:]# 变换格式,适应LSTM模型predictx = np.reshape(predictx, (1, timesteps, feature_num)) print('predictx.shape', predictx.shape)# 预测新值lstm_predict = model.predict(predictx)print('lstm_predict.shape', lstm_predict.shape)# 滚动预测# 将新预测出来的predict_steps个数据,加入predict_xlist列表,用于下次预测print('predict_xlist.shape', predict_xlist.shape)predict_xlist = np.concatenate((predict_xlist, lstm_predict), axis=1)print('predict_xlist.shape', predict_xlist.shape)# 预测的结果y,每次预测的12个数据,添加进去,直到预测length个为止lstm_predict = scaler.inverse_transform(lstm_predict.reshape(predict_steps, feature_num))predict_y = np.concatenate((predict_y, lstm_predict), axis=0)print('predict_y', predict_y.shape)return predict_y

然后对数据进行预测,得到预测结果。

from tensorflow.keras.models import load_model
model = load_model('emd_lstm_model.h5')
pre_x = scalerx.fit_transform(df_vmd[-96*8:-96])
y_predict = predict_using_LSTM(model, pre_x, timesteps, predict_steps, feature_num, length, scalerx)

5.2 可视化

对预测的各分解变量和总的预测结果进行可视化。

#分量预测结果
for i in range(y_predict.shape[1]):fig, ax = plt.subplots(dpi=100, figsize=(14, 5))ax.plot(df_vmd[-96:, -i], markevery=5, label='IMF'+str(i)+'_true')ax.plot(y_predict[:, -i], markevery=5, label='IMF'+str(i)+'_predict')ax.set_xlabel('时间')ax.set_ylabel('预测值')ax.legend(loc = 'upper right')plt.show()
# 总预测结果
plt.figure(dpi=100, figsize=(14, 5))
plt.plot(np.sum(y_predict[:, :-1], axis=1), markevery=5, label = 'all_predict')
plt.plot(df_vmd[-96:,-1], markevery=5, label = 'all_true')
plt.legend(loc = 'upper right')

最后对预测结果计算误差。

# 预测并计算误差和可视化
def error_and_plot(y_true,y_predict):# 计算误差r2 = r2_score(y_true, y_predict)rmse = mean_squared_error(y_true, y_predict, squared=False)mae = mean_absolute_error(y_true, y_predict)mape = mean_absolute_percentage_error(y_true, y_predict)print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))# 预测结果可视化cycol = cycle('bgrcmk')plt.figure(dpi=100, figsize=(14, 5))plt.plot(y_true, c=next(cycol), markevery=5)plt.plot(y_predict, c=next(cycol), markevery=5)plt.legend(['y_true', 'y_predict'])plt.xlabel('时间')plt.ylabel('功率(kW)')plt.show()   return 0
error_and_plot(df_vmd[-96:,-1], np.sum(y_predict[:, :-1], axis=1) )

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/602745.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

jsES6+新语法

目录 模板字符串标签模板字符串 函数增强默认值与解构剩余参数rest和arguments 箭头函数 展开语法SymbolSetSet方法weakSetweakSet常用方法 MapMap常用方法weakMapweakMap常用方法 PromiseProxy/Reflect迭代器与生成器ES6新增方法includes**Object.valuesObject.entriespadStar…

JMS消息发送

目录 概述1.搭建 JMS 环境2.使用JmsTemplate 发送消息3.接收JMS 消息 概述 JMS是一个Java标准&#xff0c;定义了使用消息代理(message broker)的通用API,在2001年提出。长期以来&#xff0c;JMS一直是Java 中实现异步消息的首选方案。在JMS 出现之前每个消息代理都有其私有的…

基于Python新闻推荐系统 大数据毕业设计 爬虫+可视化+推荐算法 vue框架+Django框架(附源码)✅

毕业设计&#xff1a;2023-2024年计算机专业毕业设计选题汇总&#xff08;建议收藏&#xff09; 毕业设计&#xff1a;2023-2024年最新最全计算机专业毕设选题推荐汇总 &#x1f345;感兴趣的可以先收藏起来&#xff0c;点赞、关注不迷路&#xff0c;大家在毕设选题&#xff…

mysql原理--InnoDB的Buffer Pool

1.缓存的重要性 对于使用 InnoDB 作为存储引擎的表来说&#xff0c;不管是用于存储用户数据的索引&#xff08;包括聚簇索引和二级索引&#xff09;&#xff0c;还是各种系统数据&#xff0c;都是以 页 的形式存放在 表空间 中的&#xff0c;而所谓的 表空间 只不过是 InnoDB 对…

【C语言】关闭socket需要包含的头文件

一、问题 linux系统&#xff0c;包含了头文件<sys/socket.h>&#xff0c; 警告 warning: implicit declaration of function ‘close’; did you mean ‘pclose’? [-Wimplicit-function-declaration] close(sockclient); ^~~~~ pclose 二、解决 在 Linux 系统下…

【VRTK】【VR开发】【Unity】19-VRTK实现旋转运动

课程配套学习项目源码资源下载 https://download.csdn.net/download/weixin_41697242/88485426?spm=1001.2014.3001.5503 【背景】 在实际开发中,旋转运动也是时常需要模拟的重要运动类型。常见的场景有开关门,方向盘轮胎以及拉动拉杆等等。 旋转运动的实现可以基于物理系…

给定0-1数组,找出连续1最长和次最长的2个子数组的起始位置和结束位置。

题目 给定0-1数组&#xff0c;找出连续1最长和次最长的2个子数组的起始位置和结束位置。 要求&#xff1a; 子数组长度大于等于1。 如果有多个子数组满足条件&#xff0c;按照数组下标由小到大只输出满足条件的前2个数组的起始位置和结束位置&#xff0c; 如果只有1个满足&…

【LeetCode:2807. 在链表中插入最大公约数 | 链表】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

qt三大控件

1.QListWidget控件 先在ui界面将 QListWidget拖出来竖直对齐 再去代码中实现文本插入 两种插入方式 方法1 //listWidget使用 有左右中间对齐需求QListWidgetItem * itemnew QListWidgetItem("床前明月光"); // //上面只是独立的一句话,没有关联起来ui-&g…

贯穿设计模式-责任链模式

样例代码 涉及到的项目样例代码均可以从https://github.com/WeiXiao-Hyy/Design-Patterns.git获取 需求 实时地&#xff0c;根据city&#xff0c;sex&#xff0c;product字段进行业务投放&#xff0c;比如&#xff1a;北京的男生&#xff1b;四川的电脑等等 → 责任链模式&…

基于SSM的《数据库系统原理》课程平台

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

2024--Django平台开发-Web框架和Django基础(二)

day02 Web框架和Django基础 今日概要&#xff1a; 网络底层引入&#xff0c;到底什么是web框架&#xff1f;常见web框架对比django快速上手&#xff08;创建网站&#xff09;常见操作&#xff1a;虚拟环境、django项目、多app应用、纯净版逐点剖析&#xff1a;路由、视图、模…

Java Swing手搓童年坦克大战游戏(I)

前言 业余偶尔对游戏有些兴趣&#xff0c;不过这样的时代&#xff0c;硬件软件飞速进步&#xff0c;2D游戏画面都无比精美&#xff0c;之前的8bit像素游戏时代早就过去了&#xff0c;不过那时候有许多让人印象深刻的游戏比如魂斗罗、超级玛丽、坦克大战(Battle City)等等。 学…

MCS-51单片机的基本结构

目录 一.单片机的逻辑结构 1.单片机的基本结构 2.引脚 3.中断系统 4.时钟电路 5.时序 6.典型指令的取指、执行时序 7.80C51中定时器/计数器 二.单片机的复位 三.程序的执行方式 1.单步执行方式 2.低功耗操作方式 3.EPROM编程和校验方式 首先补充一个知识点&#x…

ASP.NET Core中实现个人资料上传图片功能

当用户需要在ASP.NET Core中实现修改个人资料的功能时&#xff0c;其中一个常见的需求就是允许上传个人头像图片。下面将详细介绍如何在ASP.NET Core中实现修改个人资料上传图片的功能。 步骤一&#xff1a;控制器中添加一个HttpPost方法 首先&#xff0c;我们在控制器中添加…

案例099:基于微信小程序的外卖小程序的研究与开发

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

竞赛保研 基于深度学习的人脸专注度检测计算系统 - opencv python cnn

文章目录 1 前言2 相关技术2.1CNN简介2.2 人脸识别算法2.3专注检测原理2.4 OpenCV 3 功能介绍3.1人脸录入功能3.2 人脸识别3.3 人脸专注度检测3.4 识别记录 4 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习的人脸专注度…

UE5 给自己的数字人重定向Mixamo动画

1 、准备动画骨格文件&#xff0c;动画文件&#xff0c;下面是Mixamo动画素材下载网站Mixamo动画骨格文件下载网站https://www.mixamo.com/2、下载动画骨格文件&#xff0c;打Mixamo网站&#xff0c;选择Characters骨格菜单&#xff0c;在下面找到对应的骨格。如下图所示&#…

Qt pro文件

1. 项目通常结构 2.pri文件 pri文件可定义通用的宏&#xff0c;例如创建一个COMMON.pri文件内容为 COMMON_PATH D:\MyData 然后其它pri或者pro文件如APPTemplate.pro文件中通过添加include(Common.pri) &#xff0c;QtCreator就会自动在项目结构树里面创建对应的节点 3.变量…

Robot Operating System 2: Design, Architecture, and Uses In The Wild

Robot Operating System 2: Design, Architecture, and Uses In The Wild (机器人操作系统 2&#xff1a;设计、架构和实际应用) 摘要&#xff1a;随着机器人在广泛的商业用例中的部署&#xff0c;机器人革命的下一章正在顺利进行。即使在无数的应用程序和环境中&#xff0c;也…